
Rapport de mini
projet

Réalisé par :

BEN AHMED AHMED
AIT ELHAJ GHIZLANE

Encadré par :

Pr. Jaouad Danane

1ere année ISIBD 24/25

Système de Facturation Client

Contents

1 Introduction et Contexte 3

2 Objectifs 3

3 Outils et Technologies 3

4 Préparation de l’environnement (Si l’on travaille avec du
code qui intègre une base de données) 4
4.1 Installation d’ODBC . 4
4.2 Inclusion dans un Projet CMake 4

5 Conception du Système 5

6 Méthodologie 5
6.1 Répartition des tâches . 5
6.2 Phases de développement . 5

7 Implémentation 6
7.1 Vue d’ensemble du code . 6
7.2 Fonctions clés . 6
7.3 Extraits de code pour la partie CLI uniquement 7
7.4 L’interface . 17
7.5 Partie Admin . 17
7.6 Extraits de code pour la partie base de donnees uniquement . 20
7.7 Extraits de code pour les deux parties combinées 25
7.8 Service Management Interface - CLI and MySQL Workbench . 28

8 Développement et Intégration 31
8.1 Gestion des Erreurs . 31

9 Résultats 32

10 Conclusion et Perspectives 32

11 Défis rencontrés 33

2

1 Introduction et Contexte

Ce projet vise à simuler un système de facturation pour n’importe quel ser-
vice. Il permet d’ajouter des services consommés (nom, prix, quantité) et de
générer une facture détaillée avec un total final. Ce projet a été développé
en collaboration avec un collègue, et il a pour but de démontrer l’intégration
de fonctionnalités liées à la gestion des services et à la facturation.

2 Objectifs

Les objectifs principaux de ce projet étaient les suivants :

• Ajouter des services consommés avec des informations spécifiques (nom,
prix, quantité).

• Calculer et afficher une facture détaillée.

• Ajouter une fonctionnalité de catégorisation des services pour améliorer
l’expérience utilisateur.

• Diviser le programme en deux menus distincts : un pour l’administrateur
et un pour le client.

3 Outils et Technologies

Le projet a été développé avec les outils et technologies suivants :

• IDE: CLion (utilisé par AHMED BENAHMED) et VSCode (utilisé
par AITELHAJ GHIZLANE).

• Bibliothèques C:

– #include ¡windows.h¿

– #include ¡sqlext.h¿

– #include ¡sqltypes.h¿

– #include ¡sql.h¿

– #include ¡stdio.h¿

– #include ¡stdlib.h¿

3

• Base de données: MySQL Workbench pour la verification et gestion
de la base de données.

4 Préparation de l’environnement (Si l’on tra-

vaille avec du code qui intègre une base de

données)

Pour configurer un projet qui utilise ODBC avec CMake, suivez les étapes
suivantes :

4.1 Installation d’ODBC

1. Téléchargez et installez le pilote MySQL ODBC approprié pour votre
système depuis le site officiel MySQL. (Dans notre cas 8.1) https:

//downloads.mysql.com/archives/c-odbc/.

• Utilisez le fichier MSI pour une installation facile.

2. Vérifiez que le pilote est installé correctement en ouvrant le Gestion-
naire ODBC et en consultant l’onglet Drivers .

3. Configurez une Source de Données (DSN) via le Gestionnaire ODBC.

• Assurez-vous que le test DSN passe avec succès.

4.2 Inclusion dans un Projet CMake

1. Assurez-vous que les bibliothèques et fichiers d’en-tête nécessaires à
ODBC sont disponibles sur votre système.

2. Ajoutez les instructions suivantes à votre fichier CMakeLists.txt :

find_package(ODBC REQUIRED)

target_link_libraries(${PROJECT_NAME} PRIVATE ODBC::ODBC)

3. Ajoutez les fichiers sources contenant votre code reliant la base de
données au projet dans CMakeLists.txt.

4

https://downloads.mysql.com/archives/c-odbc/
https://downloads.mysql.com/archives/c-odbc/

5 Conception du Système

Dans la phase de conception, nous avons décidé d’ajouter une fonctionnalité
de catégorisation des services, bien qu’elle ne fût pas initialement demandée.
Cette fonctionnalité permet de classer les services en différentes catégories
afin d’améliorer l’expérience utilisateur et rendre l’interface plus intuitive.

Nous avons également divisé le programme en deux menus distincts :

• Menu Admin : Permet à l’administrateur d’ajouter des services, af-
ficher les services existants et ajouter des catégories.

• Menu Client : Permet au client de visualiser les services disponibles
et de générer une facture.

6 Méthodologie

6.1 Répartition des tâches

• Réunion initiale : Les deux partenaires ont revu les exigences du projet
et créé le MCD pour la conception du schéma de base de données.

• AITELHAJ GHIZLANE : Développement du programme CLI de base
et de sa logique.

• BEN AHMED AHMED : Intégration de la base de données, y compris
la connexion avec MySQL et la création des fonctions nécessaires pour
l’initialisation des tables, l’insertion des données et les requêtes.

6.2 Phases de développement

1. Développement du programme CLI.

2. Intégration des fonctionnalités de base de données.

3. Validation des fonctionnalités CLI indépendantes de la base de données
avant l’intégration finale.

5

7 Implémentation

7.1 Vue d’ensemble du code

Le programme est structuré autour de deux modules principaux :

• Fonctionnalité CLI : Gère l’interaction avec l’utilisateur et la logique
pour gérer les catégories, les services et les factures.

• Opérations sur la base de données : Assure le stockage persistant et la
récupération des données via MySQL en utilisant ODBC.

7.2 Fonctions clés

• connect to database : Établit la connexion à la base de données.

• init tables : Crée les tables si elles n’existent pas.

• addService : Ajoute un service sélectionné à la facture en cours.

• genererFacture : Génère une facture détaillée avec un coût total.

• insert category : Insère une nouvelle catégorie dans la base de données.

• insert service : Insère un nouveau service dans la base de données.

• get entity count : Récupère le nombre d’entités d’un type spécifique
dans la base de données.

• get categories : Récupère toutes les catégories de la base de données.

• insert default categories : Insère les catégories par défaut si au-
cune catégorie n’existe.

• insert default admin : Insère l’administrateur par défaut si aucun
administrateur n’existe.

• show tables : Affiche toutes les tables de la base de données.

• get last inserted id : Récupère le dernier identifiant inséré.

• menu admin : Affiche le menu d’administration pour gérer les services
et les catégories.

6

• menu client : Affiche le menu client pour consulter les services et
générer des factures.

• addCategorie : Ajoute une nouvelle catégorie.

• afficherServices : Affiche tous les services disponibles.

• genererFacture : Génère la facture finale basée sur les services sélectionnés.

7.3 Extraits de code pour la partie CLI uniquement

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 typedef struct categorie {

6 int id_categorie;

7 char nom [50];

8 } categorie;

9

10 typedef struct service {

11 int id_service;

12 char nom_service [50];

13 double prix_service;

14 categorie categorie_service;

15 } service;

16

17 typedef struct client {

18 int id_client;

19 char nom_client [50];

20 double montant_total;

21 char details_facture [500];

22 } client;

23

24 #define MAX_SERVICES 100

25 #define MAX_CATEGORIES 10

26 #define MAX_CLIENTS 2

27

28 service services[MAX_SERVICES];

29 categorie categories[MAX_CATEGORIES] = {

30 {1, "Coiffure"},

31 {2, "Electricite"},

32 {3, "Etudes"},

33 {4, "Restauration"},

7

34 {5, "Informatique"}

35 };

36 client clients[MAX_CLIENTS];

37 int count = 0;

38 int categorie_count = 5;

39 int client_count = 0; // Nombre de clients e n r e g i s t r s

40

41 void menu_admin ();

42 void menu_client ();

43 void addService ();

44 void afficherServices ();

45 void afficherCategories ();

46 void addCategorie ();

47 void genererFacture(int id_client);

48 void afficherFacture(double montant , char *details , char *

nom_client);

49 int findClientByName(char *nom_client);

50 void addClient ();

51 void supprimerService ();

52 void supprimerCategorie ();

53

54 int main() {

55 int choix;

56 printf("Bonjour !\n");

57

58 while (1) {

59 printf("\nMerci de selectionner si vous etes

admin ou client :\n");

60 printf("1. Admin\n");

61 printf("2. Client\n");

62 printf("3. Quitter\n");

63 printf("Votre choix : ");

64

65 if (scanf("%d", &choix) != 1) {

66 printf("Entree invalide. Veuillez

reessayer .\n");

67 while (getchar () != ’\n’);

68 continue;

69 }

70

71 switch (choix) {

72 case 1: menu_admin (); break;

73 case 2: menu_client (); break;

74 case 3:

75 printf("Au revoir !\n");

8

76 return 0;

77 default:

78 printf("Choix invalide. Veuillez

reessayer .\n");

79 }

80 }

81 return 0;

82 }

Listing 1: Code pour la fonction main

1 void menu_admin () {

2 int choix;

3 while (1) {

4 printf("\nMenu Admin :\n");

5 printf("1. Ajouter un service\n");

6 printf("2. Afficher tous les services\n");

7 printf("3. Ajouter une categorie\n");

8 printf("4. Supprimer un service\n");

9 printf("5. Supprimer une categorie\n");

10 printf("6. Retour au menu principal\n");

11 printf("Votre choix : ");

12

13 if (scanf("%d", &choix) != 1) {

14 printf("Entree invalide. Veuillez

reessayer .\n");

15 while (getchar () != ’\n’);

16 continue;

17 }

18

19 switch (choix) {

20 case 1: addService (); break;

21 case 2: afficherServices (); break;

22 case 3: addCategorie (); break;

23 case 4: supprimerService (); break;

24 case 5: supprimerCategorie (); break;

25 case 6: return;

26 default:

27 printf("Choix invalide. Veuillez

reessayer .\n");

28 }

29 }

30 }

Listing 2: Code pour le menu administrateur

9

1 void menu_client () {

2 int choix;

3 char nom_client [50];

4

5 // Demande du nom du client

6 printf("Veuillez entrer votre nom : ");

7 scanf("%s", nom_client);

8

9 int id_client = findClientByName(nom_client);

10 if (id_client == -1) {

11 printf("Client introuvable. Enregistrement d’

un nouveau client ...\n");

12 addClient(nom_client);

13 id_client = client_count - 1; // Nouvel ID

du client

14 }

15

16 do {

17 printf("\nMenu Client :\n");

18 printf("1. Voir tous les services\n");

19 printf("2. Generer une facture\n");

20 printf("3. Retour au menu principal\n");

21 printf("Votre choix : ");

22 if (scanf("%d", &choix) != 1) {

23 printf("Entree invalide. Veuillez

reessayer .\n");

24 while (getchar () != ’\n’);

25 continue;

26 }

27

28 switch (choix) {

29 case 1:

30 afficherServices ();

31 break;

32 case 2:

33 genererFacture(id_client); // Passe l

’ID du client la fonction

34 break;

35 case 3:

36 printf("Retour au menu principal ...\n

");

37 break;

38 default:

39 printf("Choix invalide. Veuillez

reessayer .\n");

10

40 }

41 } while (choix != 3);

42 }

Listing 3: Code pour le menu client

1 void supprimerService () {

2 int id_service;

3 printf("\nEntrez l’ID du service a supprimer : ");

4 if (scanf("%d", &id_service) != 1) {

5 printf("Entree invalide. Veuillez reessayer .\

n");

6 while (getchar () != ’\n’);

7 return;

8 }

9

10 int found = 0;

11 for (int i = 0; i < count; i++) {

12 if (services[i]. id_service == id_service) {

13

14 for (int j = i; j < count - 1; j++) {

15 services[j] = services[j +

1];

16 }

17 count --;

18 printf("Service avec ID %d s u p p r i m

avec s u c c s .\n", id_service);

19 found = 1;

20 break;

21 }

22 }

23

24 if (! found) {

25 printf("Service introuvable avec l’ID %d.\n",

id_service);

26 }

27 }

28

29 void supprimerCategorie () {

30 int id_categorie;

31 printf("\nEntrez l’ID de la categorie a supprimer : "

);

32 if (scanf("%d", &id_categorie) != 1) {

33 printf("Entree invalide. Veuillez reessayer .\

n");

34 while (getchar () != ’\n’);

11

35 return;

36 }

37

38 // V r i f i c a t i o n de l’existence de la c a t g o r i e

39 int found = 0;

40 for (int i = 0; i < categorie_count; i++) {

41 if (categories[i]. id_categorie ==

id_categorie) {

42 for (int j = i; j < categorie_count -

1; j++) {

43 categories[j] = categories[j

+ 1];

44 }

45 categorie_count --;

46 printf("Categorie avec ID %d

s u p p r i m e avec s u c c s .\n",

id_categorie);

47 found = 1;

48 break;

49 }

50 }

51

52 if (! found) {

53 printf("Categorie introuvable avec l’ID %d.\n

", id_categorie);

54 }

55 }

56

57 void addCategorie () {

58 if (categorie_count >= MAX_CATEGORIES) {

59 printf("Le nombre maximum de categories a ete

atteint .\n");

60 return;

61 }

62

63 printf("\nAjouter le nom de la categorie : ");

64 while (getchar () != ’\n’);

65 fgets(categories[categorie_count].nom , sizeof(

categories[categorie_count].nom), stdin);

66 categories[categorie_count].nom[strcspn(categories[

categorie_count].nom , "\n")] = ’\0’;

67

68 categories[categorie_count]. id_categorie =

categorie_count + 1;

69 printf("Categorie ’%s’ ajoutee avec succes !\n",

12

categories[categorie_count].nom);

70 categorie_count ++;

71 }

72

73 void addService () {

74 if (count >= MAX_SERVICES) {

75 printf("Le nombre maximum de services a ete

atteint .\n");

76 return;

77 }

78

79 printf("\nAjouter le nom du service : ");

80 while (getchar () != ’\n’);

81 fgets(services[count]. nom_service , sizeof(services[

count]. nom_service), stdin);

82 services[count]. nom_service[strcspn(services[count].

nom_service , "\n")] = ’\0’;

83

84 printf("Ajouter le prix du service : ");

85 if (scanf("%lf", &services[count]. prix_service) != 1)

{

86 printf("Entree invalide pour le prix. Service

non ajoute .\n");

87 while (getchar () != ’\n’);

88 return;

89 }

90

91 while (1) {

92 printf("Veuillez choisir une categorie dans

la liste ci -dessous :\n");

93 afficherCategories ();

94

95 int id_categorie;

96 printf("Entrez l’ID de la categorie (ou 0

pour ajouter une nouvelle categorie) : ");

97 if (scanf("%d", &id_categorie) != 1) {

98 printf("Entree invalide. Veuillez

reessayer .\n");

99 while (getchar () != ’\n’);

100 continue;

101 }

102

103 if (id_categorie == 0) {

104 addCategorie ();

105 services[count]. categorie_service =

13

categories[categorie_count - 1];

106 break;

107 }

108

109 int categorie_trouvee = 0;

110 for (int i = 0; i < categorie_count; i++) {

111 if (categories[i]. id_categorie ==

id_categorie) {

112 services[count].

categorie_service =

categories[i];

113 categorie_trouvee = 1;

114 break;

115 }

116 }

117

118 if (categorie_trouvee) {

119 break;

120 } else {

121 printf("Categorie invalide. Veuillez

reessayer .\n");

122 }

123 }

124

125 services[count]. id_service = count + 1;

126 printf("Service ajoute avec succes !\n");

127 count ++;

128 }

129

130 void afficherServices () {

131 if (count == 0) {

132 printf("Aucun service disponible .\n");

133 return;

134 }

135

136 for (int i = 0; i < count; i++) {

137 printf("ID : %d | Nom : %s | Prix : %.2f |

Categorie : %s\n",

138 services[i].id_service ,

139 services[i]. nom_service ,

140 services[i]. prix_service ,

141 services[i]. categorie_service.nom);

142 }

143 }

144

14

145 void afficherCategories () {

146 printf("\nListe des categories disponibles :\n");

147 for (int i = 0; i < categorie_count; i++) {

148 printf("ID : %d | Nom : %s\n", categories[i].

id_categorie , categories[i].nom);

149 }

150 }

Listing 4: Code pour la gestion des services et categories

1 int findClientByName(char *nom_client) {

2 for (int i = 0; i < client_count; i++) {

3 if (strcmp(clients[i]. nom_client , nom_client)

== 0) {

4 return i; // retourne l’indice du

client

5 }

6 }

7 return -1; // Client non t r o u v

8 }

9

10 void addClient(char *nom_client) {

11 if (client_count >= MAX_CLIENTS) {

12 printf("Le nombre maximum de clients a ete

atteint .\n");

13 return;

14 }

15

16 clients[client_count]. id_client = client_count + 1;

17 strcpy(clients[client_count]. nom_client , nom_client);

18 clients[client_count]. montant_total = 0.0;

19 clients[client_count]. details_facture [0] = ’\0’;

20 printf("Client ’%s’ ajoute avec succes !\n",

nom_client);

21 client_count ++;

22 }

Listing 5: Code pour la gestion des clients

1 void genererFacture(int id_client) {

2 double montant_total = 0.0;

3 int id_service;

4 char details_facture [500] = "";

5

6 printf("\nGeneration de facture pour %s\n", clients[

id_client]. nom_client);

15

7 printf("\nListe des services disponibles :\n");

8 afficherServices ();

9

10 do {

11 printf("Entrez l’ID du service que vous

souhaitez ajouter (0 pour terminer) : ");

12 if (scanf("%d", &id_service) != 1) {

13 printf("Entree invalide. Veuillez

reessayer .\n");

14 while (getchar () != ’\n’);

15 continue;

16 }

17

18 if (id_service == 0) {

19 break;

20 }

21

22 int service_trouve = 0;

23 for (int i = 0; i < count; i++) {

24 if (services[i]. id_service ==

id_service) {

25 montant_total += services[i].

prix_service;

26 sprintf(details_facture +

strlen(details_facture),

27 "Service: %s | Prix: %.2f\n",

28 services[i]. nom_service ,

services[i]. prix_service);

29 strcat(details_facture , "

+---------------------------+\

n");

30 service_trouve = 1;

31 break;

32 }

33 }

34

35 if (! service_trouve) {

36 printf("Service introuvable. Essayez

avec un ID valide .\n");

37 }

38

39 } while (id_service != 0);

40

41 afficherFacture(montant_total , details_facture ,

clients[id_client]. nom_client);

16

42 }

43

44 void afficherFacture(double montant , char *details , char *

nom_client) {

45 printf("\n+-------- Facture ----------+\n");

46 printf("+---------------------------+\n");

47 printf("+--------%s--------+\n", nom_client);

48 printf("+---------------------------+\n");

49 printf("%s\n", details);

50 printf("\n+Total: +%.2f+\n", montant);

51 printf("+---------------------------+\n");

52 }

Listing 6: Code pour generer une facture

7.4 L’interface

7.5 Partie Admin

on choisit d’acceder en tant que Admin

17

on choisit d’ajouter un service // on peut meme ajouter une nouvelle
categorie si elle n’existe pas

18

on peut meme supprimer un service / categorie

on accede maintenant en tant que client pour voir les services et avoir une
facture

on prend notre facture

19

Et on quitte

7.6 Extraits de code pour la partie base de donnees
uniquement

Les extraits de code suivants illustrent des parties cles de l’integration de la
base de donnees :

1 void connect_to_database(DBContext* db_context) {

2 // Allocate environment handle

3 db_context ->retcode = SQLAllocHandle(SQL_HANDLE_ENV ,

SQL_NULL_HANDLE , &db_context ->env);

4 check_error(db_context ->retcode , db_context ->env ,

SQL_HANDLE_ENV , "connect_to_database - SQLAllocHandle"

);

5

6 // Set the ODBC version

7 db_context ->retcode = SQLSetEnvAttr(db_context ->env ,

SQL_ATTR_ODBC_VERSION , (SQLPOINTER)SQL_OV_ODBC3 , 0);

8 check_error(db_context ->retcode , db_context ->env ,

SQL_HANDLE_ENV , "connect_to_database - SQLSetEnvAttr")

;

9

10 // Allocate connection handle

11 db_context ->retcode = SQLAllocHandle(SQL_HANDLE_DBC ,

db_context ->env , &db_context ->dbc);

12 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "connect_to_database - SQLAllocHandle

");

13

20

14 // Connect to the database

15 SQLCHAR connStr [] = "DRIVER ={C:\\ Program Files\\ MySQL\\

Connector ODBC 8.1\\ myodbc8w.dll}; SERVER=localhost;

PORT =3306; DATABASE=test;USER=root;PASSWORD =;";

16 db_context ->retcode = SQLDriverConnect(db_context ->dbc ,

NULL , connStr , SQL_NTS , NULL , 0, NULL ,

SQL_DRIVER_COMPLETE);

17 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "connect_to_database -

SQLDriverConnect");

18

19 printf("Connected successfully to MySQL database !\n");

20 }

Listing 7: Code pour la connexion a la base de donnees

1 void init_tables(DBContext* db_context) {

2 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

3 init_table("Admin",

4 "CREATE TABLE IF NOT EXISTS admin(admin_id INT

PRIMARY KEY AUTO_INCREMENT , nom VARCHAR (45) NOT

NULL , prenom VARCHAR (45) NOT NULL)",

5 db_context);

6 init_table("Client",

7 "CREATE TABLE IF NOT EXISTS client(client_id INT

PRIMARY KEY AUTO_INCREMENT , nom VARCHAR (45) NOT

NULL , prenom VARCHAR (45) NOT NULL)",

8 db_context); // Si On va implementez la fonction de

log in des utilisateurs.

9

10 init_table("Category",

11 "CREATE TABLE IF NOT EXISTS category(category_id INT

PRIMARY KEY AUTO_INCREMENT , nom VARCHAR (45) NOT

NULL)",

12 db_context);

13 init_table("Services",

14 "CREATE TABLE IF NOT EXISTS services(service_id INT

PRIMARY KEY AUTO_INCREMENT , nom VARCHAR (45) NOT NULL ,

prix DOUBLE NOT NULL , admin_id INT NOT NULL ,

category_id INT , FOREIGN KEY (admin_id) references

admin(admin_id) on delete cascade on update restrict ,

FOREIGN KEY (category_id) REFERENCES category(

category_id) on delete cascade on update restrict)",

15 db_context);

16 init_table("Commands",

21

17 "CREATE TABLE IF NOT EXISTS commands(service_id INT ,

client_id INT , FOREIGN KEY (client_id) references

client(client_id) on delete cascade on update restrict

, FOREIGN KEY (service_id) references services(

service_id) on delete cascade on update restrict)",

18 db_context);

19 // Execute an SQL query

20 show_tables(db_context);

21 insert_default_admin(db_context);

22 insert_default_categories(db_context);

23 }

Listing 8: Code pour l’initialisation des tables

1 void init_table(char* tableName , char* tableQuery , DBContext*

db_context) {

2 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

3 printf("CREATING TABLE %s ---> ", tableName);

4

5 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *) tableQuery , SQL_NTS);

6 char error_message [100];

7

8 sprintf(error_message , "Error Creating the table %s.",

tableName);

9 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , error_message);

10 if(db_context ->retcode == SQL_SUCCESS || db_context ->

retcode == SQL_SUCCESS_WITH_INFO) {

11 printf("TABLE %s HAS BEEN CREATED SUCCESSFULLY \n",

tableName);

12 }

13 }

Listing 9: Code pour l’initialisation de chaque table

1 int get_entity_count(char* entity , DBContext* db_context) {

2 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

3 char query [100] = "SELECT count (*) FROM ";

4 strcat(query , entity);

5 printf("query: %s \n", query);

6 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

7 char err [70] = "ERROR RETREVING COUNT ";

22

8 strcat(err , entity);

9 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , err);

10 SQLINTEGER countRowsInCategoryTable; // Buffer to hold

table names

11 SQLLEN indicator; // Indicator for NULL values

12 SQLFetch(db_context ->hstmt);

13 SQLGetData(db_context ->hstmt , 1, SQL_INTEGER , &

countRowsInCategoryTable , sizeof(

countRowsInCategoryTable), &indicator);

14 return countRowsInCategoryTable;

15 }

Listing 10: Code pour recuperer le nombre d’entites

1 void insert_default_categories(DBContext* db_context) {

2 int countCategories = get_entity_count("category",

db_context);

3 if(countCategories == 0) {

4 printf("\n----------------- INSERTING DEFAULT

CATEGORIES -----------------\n");

5 insert_category("Informatique", db_context);

6 insert_category("Electricite", db_context);

7 insert_category("Etudes", db_context);

8 insert_category("Restauration", db_context);

9 insert_category("Coiffure", db_context);

10 } else {

11 printf("%d Default categories were found \n",

countCategories);

12 get_categories(db_context);

13 }

14 }

15

16 void insert_default_admin(DBContext* db_context) {

17 int countAdmins = get_entity_count("admin", db_context);

18 if(countAdmins == 0) {

19 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

20 printf(" ---> INSERTING ADMIN: %s \n", "Ahmed Ben

Ahmed");

21 char *query = "INSERT INTO admin(nom , prenom) values

(?,?)"; // Supposing there is only one admin using

the system

22 SQLBindParameter(db_context ->hstmt , 1,

SQL_PARAM_INPUT , SQL_C_CHAR , SQL_VARCHAR , 0,0,(

SQLCHAR *) "BEN_AHMED", 0, NULL);

23

23 SQLBindParameter(db_context ->hstmt , 2,

SQL_PARAM_INPUT , SQL_C_CHAR , SQL_VARCHAR , 0,0,(

SQLCHAR *) "AHMED", 0, NULL);

24 db_context ->retcode = SQLExecDirect(db_context ->hstmt

, (SQLCHAR *)query , SQL_NTS);

25 char *error_message;

26 sprintf(error_message , "ERROR INSERTING THE Admin %s.

", "Ahmed Ben Ahmed");

27 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , error_message);

28 printf("ADMIN %s HAS BEEN CREATED SUCCESSFULLY \n", "

Ahmed Ben Ahmed");

29 }

30 }

Listing 11: Code pour ajouter les donnees par defaut

1 void get_services(DBContext* db_context) {

2 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

3 char* query = "SELECT s.service_id , s.nom , a.nom , a.

prenom , c.nom , s.prix FROM services as s JOIN category

as c on c.category_id = s.category_id JOIN admin as a

ON a.admin_id = s.admin_id";

4 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

5 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "RETRIEVING ALL SERVICES");

6 SQLLEN indicator; // Indicator for NULL values

7 while (SQLFetch(db_context ->hstmt) != SQL_NO_DATA) {

8 int service_id;

9 double service_price;

10 char serviceName [100]; // maybe change

11 char adminNom [100]; // maybe change

12 char adminPrenom [100]; // maybe change

13 char categorieName [100]; // maybe change

14 SQLGetData(db_context ->hstmt , 1, SQL_INTEGER , &

service_id , sizeof(service_id), &indicator);

15 SQLGetData(db_context ->hstmt , 2, SQL_C_CHAR ,

serviceName , sizeof(serviceName), &indicator);

16 SQLGetData(db_context ->hstmt , 3, SQL_C_CHAR , adminNom

, sizeof(adminNom), &indicator);

17 SQLGetData(db_context ->hstmt , 4, SQL_C_CHAR ,

adminPrenom , sizeof(adminPrenom), &indicator);

18 SQLGetData(db_context ->hstmt , 5, SQL_C_CHAR ,

categorieName , sizeof(categorieName), &indicator);

24

19 SQLGetData(db_context ->hstmt , 6, SQL_DOUBLE , &

service_price , sizeof(service_price), &indicator);

20 printf("ID : %d | Nom : %s | Prix : %.2f | Categorie

: %s | Ajoutee par: %s %s\n",service_id ,

serviceName , service_price , categorieName ,

adminPrenom , adminNom);

21 }

22 }

Listing 12: Code pour recuperer tous les services

7.7 Extraits de code pour les deux parties combinées

Il n’y a pas beaucoup de modifications dans les parties menus.

1

2 typedef struct {

3 SQLHANDLE dbc;

4 SQLRETURN retcode;

5 SQLHSTMT hstmt;

6 SQLHANDLE env;

7 } DBContext;

8

9 int main() {

10 DBContext db_context;

11 connect_to_database (& db_context);

12 init_tables (& db_context);

13 int choix;

14 printf("Bonjour !\n");

15

16 while (1) {

17 printf("\nMerci de selectionner si vous etes admin ou

client :\n");

18 printf("1. Admin\n");

19 printf("2. Client\n");

20 printf("3. Quitter\n");

21 printf("Votre choix : ");

22

23 if (scanf("%d", &choix) != 1) {

24 printf("Entree invalide. Veuillez reessayer .\n");

25 while (getchar () != ’\n’);

26 continue;

27 }

28

29 switch (choix) {

25

30 case 1: menu_admin (& db_context); break;

31 case 2: menu_client (& db_context); break;

32 case 3:

33 printf("Au revoir !\n");

34 SQLDisconnect(db_context.dbc);

35 SQLFreeHandle(SQL_HANDLE_DBC , db_context.dbc)

;

36 SQLFreeHandle(SQL_HANDLE_ENV , db_context.env)

;

37 return 0;

38 default:

39 printf("Choix invalide. Veuillez reessayer .\n

");

40 }

41 }

42 }

Listing 13: Code pour le nouveau main

1 service* addService(DBContext* db_context) {

2 service *service;

3 if((service = malloc(sizeof(service))) == NULL) return

NULL;

4 printf("\nAjouter le nom du service : ");

5 while (getchar () != ’\n’);

6 fgets(service ->nom_service , sizeof(service ->nom_service),

stdin);

7 service ->nom_service[strcspn(service ->nom_service , "\n")]

= ’\0’;

8

9 printf("Ajouter le prix du service : ");

10 if (scanf("%lf", &service ->prix_service) != 1) {

11 printf("Entree invalide pour le prix. Service non

ajoute .\n");

12 while (getchar () != ’\n’);

13 return NULL;

14 }

15 int id_categorie;

16 while (1) {

17 printf("Veuillez choisir une categorie dans la liste

ci-dessous :\n");

18 get_categories(db_context);

19

20 printf("Entrez l’ID de la categorie (ou 0 pour

ajouter une nouvelle categorie) : ");

21 if (scanf("%d", &id_categorie) != 1) {

26

22 printf("Entree invalide. Veuillez reessayer .\n");

23 while (getchar () != ’\n’);

24 continue;

25 }

26

27 if (id_categorie == 0) {

28 categorie categorie;

29 printf("\nAjouter le nom de la nouvelle categorie

: ");

30 while (getchar () != ’\n’);

31 fgets(categorie.nom , sizeof(categorie.nom), stdin

);

32 categorie.nom[strcspn(categorie.nom , "\n")] = ’\0

’;

33 id_categorie = insert_category(categorie.nom ,

db_context);

34 printf("Nouvelle categorie ajoutee avec s u c c s

aved ID: %d !\n",id_categorie);

35 break;

36 }

37

38 int categorie_trouvee = getCategorieById(id_categorie

, db_context) != NULL;

39

40 if (categorie_trouvee) {

41 break;

42 }

43 printf("Categorie invalide. Veuillez reessayer .\n");

44 }

45 service ->categorie_service_id = id_categorie;

46 insert_service (*service , db_context);

47 printf("Service ajoute avec succes !\n");

48 }

Listing 14: Code pour la nouvelle fonction d’ajout de service

1 void afficherServices(DBContext* db_context) {

2 int count = get_entity_count("services", db_context);

3 if (count == 0) {

4 printf("Aucun service disponible .\n");

5 return;

6 }

7 get_services(db_context);

8 }

Listing 15: Code pour la nouvelle fonction d’affichage des services

27

7.8 Service Management Interface - CLI and MySQL
Workbench

Création réussie des tables de la base de données (Admin, Client, Category,
Services, Commands)

Vue des tables dans MySQL Workbench

28

Affichage des catégories par défaut dans le système

Requête SELECT montrant les informations de l’administrateur

29

Requête JOIN affichant les services avec les informations associées des
tables admin et category

Liste des services disponibles avec leurs détails (ID, Nom, Prix, Catégorie)

Requête SELECT affichant les services avec leurs détails

30

8 Développement et Intégration

Le développement a été réalisé de manière collaborative. Après avoir convenu
de la structure générale du projet, nous avons divisé les tâches :

• Mon collègue a développé la partie logicielle du programme en ligne de
commande (CLI), qui gère les interactions avec l’utilisateur.

• De mon côté, je me suis concentré sur l’intégration de la base de données
via le connecteur ODBC 8.1. J’ai créé les fonctions pour la connexion à
la base de données, l’initialisation des tables, et l’insertion des données
par défaut (par exemple, un utilisateur admin et des catégories par
défaut).

8.1 Gestion des Erreurs

Pendant le processus d’intégration, nous avons rencontré plusieurs erreurs,
notamment liées à la gestion de la connexion à la base de données. Un des
principaux problèmes était de s’assurer que les tables étaient correctement
initialisées avant d’effectuer toute opération. Voici un exemple de gestion des
erreurs dans notre code C :

1 void check_error(SQLRETURN retcode , SQLHANDLE handle ,

SQLSMALLINT type , char* error_message) {

2 if (retcode != SQL_SUCCESS && retcode !=

SQL_SUCCESS_WITH_INFO) {

3 SQLCHAR sqlState [6], message [256];

4 SQLINTEGER nativeError;

5 SQLSMALLINT messageLength;

6 SQLGetDiagRec(type , handle , 1, sqlState , &nativeError

, message , sizeof(message), &messageLength);

7 printf("%s \n", error_message);

8 printf("ODBC Error: %s (%d): %s\n", sqlState ,

nativeError , message);

9 exit(EXIT_FAILURE);

10 }

11 }

Listing 16: Code pour la nouvelle fonction d’affichage des services

31

9 Résultats

Les résultats du projet ont été positifs. Après avoir intégré les deux par-
ties (menu CLI et base de données), nous avons pu générer des factures
détaillées et afficher les services disponibles. Nous avons également validé le
bon fonctionnement de la base de données en utilisant MySQL Workbench
pour vérifier les données insérées.

10 Conclusion et Perspectives

Ce projet a permis de renforcer nos compétences en programmation C et en
gestion de base de données avec ODBC. Nous avons réussi à créer un système
de facturation simple mais fonctionnel. À l’avenir, nous pourrions étendre ce
système pour permettre une gestion multi-clients, ainsi que l’ajout d’autres
fonctionnalités comme la gestion des paiements ou la génération de rapports
de facturation.

32

11 Défis rencontrés

• Problèmes de connexion à la base de données : Des erreurs ini-
tiales sont survenues en raison d’une configuration incorrecte d’ODBC.
Cela a été résolu en déboguant la châıne de connexion et en testant les
requêtes dans MySQL Workbench.

• Validation des entrées : Des entrées utilisateur non validées ont
causé des plantages. Une validation robuste a été ajoutée pour les
options du menu.

• Bugs d’intégration : L’intégration des fonctionnalités CLI avec les
opérations sur la base de données a entrâıné des erreurs de récupération
de données, qui ont été résolues en testant les composants individuelle-
ment avant l’intégration.

Tout le code de la partie CLI

1

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5

6 typedef struct categorie {

7 int id_categorie;

8 char nom [50];

9 } categorie;

10

11 typedef struct service {

12 int id_service;

13 char nom_service [50];

14 double prix_service;

15 categorie categorie_service;

16 } service;

17

18 typedef struct client {

19 int id_client;

20 char nom_client [50];

21 double montant_total;

22 char details_facture [500];

23 } client;

24

33

25 #define MAX_SERVICES 100

26 #define MAX_CATEGORIES 10

27 #define MAX_CLIENTS 2

28

29 service services[MAX_SERVICES];

30 categorie categories[MAX_CATEGORIES] = {

31 {1, "Coiffure"},

32 {2, "Electricite"},

33 {3, "Etudes"},

34 {4, "Restauration"},

35 {5, "Informatique"}

36 };

37 client clients[MAX_CLIENTS];

38 int count = 0;

39 int categorie_count = 5;

40 int client_count = 0; // Nombre de clients e n r e g i s t r s

41

42 void menu_admin ();

43 void menu_client ();

44 void addService ();

45 void afficherServices ();

46 void afficherCategories ();

47 void addCategorie ();

48 void genererFacture(int id_client);

49 void afficherFacture(double montant , char *details , char *

nom_client);

50 int findClientByName(char *nom_client);

51 void addClient ();

52 void supprimerService ();

53 void supprimerCategorie ();

54

55 int main() {

56 int choix;

57 printf("Bonjour !\n");

58

59 while (1) {

60 printf("\nMerci de selectionner si vous etes admin ou

client :\n");

61 printf("1. Admin\n");

62 printf("2. Client\n");

63 printf("3. Quitter\n");

64 printf("Votre choix : ");

65

66 if (scanf("%d", &choix) != 1) {

67 printf("Entree invalide. Veuillez reessayer .\n");

34

68 while (getchar () != ’\n’);

69 continue;

70 }

71

72 switch (choix) {

73 case 1: menu_admin (); break;

74 case 2: menu_client (); break;

75 case 3:

76 printf("Au revoir !\n");

77 return 0;

78 default:

79 printf("Choix invalide. Veuillez reessayer .\n

");

80 }

81 }

82 return 0;

83 }

84

85 void menu_admin () {

86 int choix;

87 while (1) {

88 printf("\nMenu Admin :\n");

89 printf("1. Ajouter un service\n");

90 printf("2. Afficher tous les services\n");

91 printf("3. Ajouter une categorie\n");

92 printf("4. Supprimer un service\n");

93 printf("5. Supprimer une categorie\n");

94 printf("6. Retour au menu principal\n");

95 printf("Votre choix : ");

96

97 if (scanf("%d", &choix) != 1) {

98 printf("Entree invalide. Veuillez reessayer .\n");

99 while (getchar () != ’\n’);

100 continue;

101 }

102

103 switch (choix) {

104 case 1: addService (); break;

105 case 2: afficherServices (); break;

106 case 3: addCategorie (); break;

107 case 4: supprimerService (); break;

108 case 5: supprimerCategorie (); break;

109 case 6: return;

110 default:

35

111 printf("Choix invalide. Veuillez reessayer .\n

");

112 }

113 }

114 }

115 void supprimerService () {

116 int id_service;

117 printf("\nEntrez l’ID du service a supprimer : ");

118 if (scanf("%d", &id_service) != 1) {

119 printf("Entree invalide. Veuillez reessayer .\n");

120 while (getchar () != ’\n’);

121 return;

122 }

123

124 int found = 0;

125 for (int i = 0; i < count; i++) {

126 if (services[i]. id_service == id_service) {

127

128 for (int j = i; j < count - 1; j++) {

129 services[j] = services[j + 1];

130 }

131 count --;

132 printf("Service avec ID %d s u p p r i m avec s u c c s

.\n", id_service);

133 found = 1;

134 break;

135 }

136 }

137

138 if (!found) {

139 printf("Service introuvable avec l’ID %d.\n",

id_service);

140 }

141 }

142

143 void supprimerCategorie () {

144 int id_categorie;

145 printf("\nEntrez l’ID de la categorie a supprimer : ");

146 if (scanf("%d", &id_categorie) != 1) {

147 printf("Entree invalide. Veuillez reessayer .\n");

148 while (getchar () != ’\n’);

149 return;

150 }

151

152 // V r i f i c a t i o n de l’existence de la c a t g o r i e

36

153 int found = 0;

154 for (int i = 0; i < categorie_count; i++) {

155 if (categories[i]. id_categorie == id_categorie) {

156 for (int j = i; j < categorie_count - 1; j++) {

157 categories[j] = categories[j + 1];

158 }

159 categorie_count --;

160 printf("Categorie avec ID %d s u p p r i m e avec

s u c c s .\n", id_categorie);

161 found = 1;

162 break;

163 }

164 }

165

166 if (!found) {

167 printf("Categorie introuvable avec l’ID %d.\n",

id_categorie);

168 }

169 }

170

171 void addCategorie () {

172 if (categorie_count >= MAX_CATEGORIES) {

173 printf("Le nombre maximum de categories a ete atteint

.\n");

174 return;

175 }

176

177 printf("\nAjouter le nom de la categorie : ");

178 while (getchar () != ’\n’);

179 fgets(categories[categorie_count].nom , sizeof(categories[

categorie_count].nom), stdin);

180 categories[categorie_count].nom[strcspn(categories[

categorie_count].nom , "\n")] = ’\0’;

181

182 categories[categorie_count]. id_categorie =

categorie_count + 1;

183 printf("Categorie ’%s’ ajoutee avec succes !\n",

categories[categorie_count].nom);

184 categorie_count ++;

185 }

186

187 void addService () {

188 if (count >= MAX_SERVICES) {

189 printf("Le nombre maximum de services a ete atteint .\

n");

37

190 return;

191 }

192

193 printf("\nAjouter le nom du service : ");

194 while (getchar () != ’\n’);

195 fgets(services[count]. nom_service , sizeof(services[count

]. nom_service), stdin);

196 services[count]. nom_service[strcspn(services[count].

nom_service , "\n")] = ’\0’;

197

198 printf("Ajouter le prix du service : ");

199 if (scanf("%lf", &services[count]. prix_service) != 1) {

200 printf("Entree invalide pour le prix. Service non

ajoute .\n");

201 while (getchar () != ’\n’);

202 return;

203 }

204

205 while (1) {

206 printf("Veuillez choisir une categorie dans la liste

ci-dessous :\n");

207 afficherCategories ();

208

209 int id_categorie;

210 printf("Entrez l’ID de la categorie (ou 0 pour

ajouter une nouvelle categorie) : ");

211 if (scanf("%d", &id_categorie) != 1) {

212 printf("Entree invalide. Veuillez reessayer .\n");

213 while (getchar () != ’\n’);

214 continue;

215 }

216

217 if (id_categorie == 0) {

218 addCategorie ();

219 services[count]. categorie_service = categories[

categorie_count - 1];

220 break;

221 }

222

223 int categorie_trouvee = 0;

224 for (int i = 0; i < categorie_count; i++) {

225 if (categories[i]. id_categorie == id_categorie) {

226 services[count]. categorie_service =

categories[i];

227 categorie_trouvee = 1;

38

228 break;

229 }

230 }

231

232 if (categorie_trouvee) {

233 break;

234 } else {

235 printf("Categorie invalide. Veuillez reessayer .\n

");

236 }

237 }

238

239 services[count]. id_service = count + 1;

240 printf("Service ajoute avec succes !\n");

241 count ++;

242 }

243

244 void afficherServices () {

245 if (count == 0) {

246 printf("Aucun service disponible .\n");

247 return;

248 }

249

250 for (int i = 0; i < count; i++) {

251 printf("ID : %d | Nom : %s | Prix : %.2f | Categorie

: %s\n",

252 services[i].id_service ,

253 services[i]. nom_service ,

254 services[i]. prix_service ,

255 services[i]. categorie_service.nom);

256 }

257 }

258

259 void afficherCategories () {

260 printf("\nListe des categories disponibles :\n");

261 for (int i = 0; i < categorie_count; i++) {

262 printf("ID : %d | Nom : %s\n", categories[i].

id_categorie , categories[i].nom);

263 }

264 }

265

266 void menu_client () {

267 int choix;

268 char nom_client [50];

269

39

270 // Demande du nom du client

271 printf("Veuillez entrer votre nom : ");

272 scanf("%s", nom_client);

273

274 int id_client = findClientByName(nom_client);

275 if (id_client == -1) {

276 printf("Client introuvable. Enregistrement d’un

nouveau client ...\n");

277 addClient(nom_client);

278 id_client = client_count - 1; // Nouvel ID du client

279 }

280

281 do {

282 printf("\nMenu Client :\n");

283 printf("1. Voir tous les services\n");

284 printf("2. Generer une facture\n");

285 printf("3. Retour au menu principal\n");

286 printf("Votre choix : ");

287 if (scanf("%d", &choix) != 1) {

288 printf("Entree invalide. Veuillez reessayer .\n");

289 while (getchar () != ’\n’);

290 continue;

291 }

292

293 switch (choix) {

294 case 1:

295 afficherServices ();

296 break;

297 case 2:

298 genererFacture(id_client); // Passe l’ID du

client la fonction

299 break;

300 case 3:

301 printf("Retour au menu principal ...\n");

302 break;

303 default:

304 printf("Choix invalide. Veuillez reessayer .\n

");

305 }

306 } while (choix != 3);

307 }

308

309 void genererFacture(int id_client) {

310 double montant_total = 0.0;

311 int id_service;

40

312 char details_facture [500] = "";

313

314 printf("\nGeneration de facture pour %s\n", clients[

id_client]. nom_client);

315 printf("\nListe des services disponibles :\n");

316 afficherServices ();

317

318 do {

319 printf("Entrez l’ID du service que vous souhaitez

ajouter (0 pour terminer) : ");

320 if (scanf("%d", &id_service) != 1) {

321 printf("Entree invalide. Veuillez reessayer .\n");

322 while (getchar () != ’\n’);

323 continue;

324 }

325

326 if (id_service == 0) {

327 break;

328 }

329

330 int service_trouve = 0;

331 for (int i = 0; i < count; i++) {

332 if (services[i]. id_service == id_service) {

333 montant_total += services[i]. prix_service;

334 sprintf(details_facture + strlen(

details_facture),

335 "Service: %s | Prix: %.2f\n",

336 services[i]. nom_service , services[i].

prix_service);

337 strcat(details_facture , "

+---------------------------+\n");

338 service_trouve = 1;

339 break;

340 }

341 }

342

343 if (! service_trouve) {

344 printf("Service introuvable. Essayez avec un ID

valide .\n");

345 }

346

347 } while (id_service != 0);

348

349 afficherFacture(montant_total , details_facture , clients[

id_client]. nom_client);

41

350 }

351

352 void afficherFacture(double montant , char *details , char *

nom_client) {

353 printf("\n+-------- Facture ----------+\n");

354 printf("+---------------------------+\n");

355 printf("+--------%s--------+\n", nom_client);

356 printf("+---------------------------+\n");

357 printf("%s\n", details);

358 printf("\n+Total: +%.2f+\n", montant);

359 printf("+---------------------------+\n");

360 }

361

362 int findClientByName(char *nom_client) {

363 for (int i = 0; i < client_count; i++) {

364 if (strcmp(clients[i]. nom_client , nom_client) == 0) {

365 return i; // retourne l’indice du client

366 }

367 }

368 return -1; // Client non t r o u v

369 }

370

371 void addClient(char *nom_client) {

372 if (client_count >= MAX_CLIENTS) {

373 printf("Le nombre maximum de clients a ete atteint .\n

");

374 return;

375 }

376

377 clients[client_count]. id_client = client_count + 1;

378 strcpy(clients[client_count]. nom_client , nom_client);

379 clients[client_count]. montant_total = 0.0;

380 clients[client_count]. details_facture [0] = ’\0’;

381 printf("Client ’%s’ ajoute avec succes !\n", nom_client);

382 client_count ++;

383 }

Listing 17: Code pour la nouvelle fonction d’affichage des services

Tout le code de la partie CLI integrée avec

MySQL

42

1

2 #include <windows.h> // For HWND

3 #include <sqlext.h> // ODBC headers

4 #include <sqltypes.h>

5 #include <sql.h>

6 #include <stdio.h>

7 #include <stdlib.h>

8

9 typedef struct {

10 SQLHANDLE dbc;

11 SQLRETURN retcode;

12 SQLHSTMT hstmt;

13 SQLHANDLE env;

14 } DBContext;

15

16 typedef struct categorie {

17 int id_categorie;

18 char nom [50];

19 } categorie;

20

21 typedef struct service {

22 int id_service;

23 char nom_service [50];

24 double prix_service;

25 int categorie_service_id;

26 } service;

27

28

29 void connect_to_database(DBContext* db_context);

30 void init_tables(DBContext* db_context);

31 int insert_category(char* categoryName , DBContext* db_context

);

32 int insert_service(service service , DBContext* db_context);

33 int get_entity_count(char* entity , DBContext* db_context);

34 void get_categories(DBContext* db_context);

35 void insert_default_categories(DBContext* db_context);

36 void insert_default_admin(DBContext* db_context);

37 void show_tables(DBContext* db_context);

38 int get_last_inserted_id(DBContext* db_context);

39 void menu_admin(DBContext* db_context);

40 void menu_client(DBContext* db_context);

41 service* addService(DBContext* db_context);

42 void afficherServices(DBContext* db_context);

43 void afficherCategories(DBContext* db_context);

44 void addCategorie(DBContext* db_context);

43

45 void genererFacture(DBContext* db_context);

46

47 int main() {

48 DBContext db_context;

49 connect_to_database (& db_context);

50 init_tables (& db_context);

51 int choix;

52 printf("Bonjour !\n");

53

54 while (1) {

55 printf("\nMerci de selectionner si vous etes admin ou

client :\n");

56 printf("1. Admin\n");

57 printf("2. Client\n");

58 printf("3. Quitter\n");

59 printf("Votre choix : ");

60

61 if (scanf("%d", &choix) != 1) {

62 printf("Entree invalide. Veuillez reessayer .\n");

63 while (getchar () != ’\n’);

64 continue;

65 }

66

67 switch (choix) {

68 case 1: menu_admin (& db_context); break;

69 case 2: menu_client (& db_context); break;

70 case 3:

71 printf("Au revoir !\n");

72 SQLDisconnect(db_context.dbc);

73 SQLFreeHandle(SQL_HANDLE_DBC , db_context.dbc)

;

74 SQLFreeHandle(SQL_HANDLE_ENV , db_context.env)

;

75 return 0;

76 default:

77 printf("Choix invalide. Veuillez reessayer .\n

");

78 }

79 }

80

81 }

82

83

84 void check_error(SQLRETURN retcode , SQLHANDLE handle ,

SQLSMALLINT type , char* error_message) {

44

85 if (retcode != SQL_SUCCESS && retcode !=

SQL_SUCCESS_WITH_INFO) {

86 SQLCHAR sqlState [6], message [256];

87 SQLINTEGER nativeError;

88 SQLSMALLINT messageLength;

89 SQLGetDiagRec(type , handle , 1, sqlState , &nativeError

, message , sizeof(message), &messageLength);

90 printf("%s \n", error_message);

91 printf("ODBC Error: %s (%d): %s\n", sqlState ,

nativeError , message);

92 exit(EXIT_FAILURE);

93 }

94 }

95 void init_table(char* tableName , char* tableQuery ,DBContext*

db_context) {

96 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

97 printf("CREATING TABLE %s ---> ", tableName);

98

99 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *) tableQuery , SQL_NTS);

100 char error_message [100];

101

102 sprintf(error_message , "Error Creating the table %s.",

tableName);

103 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , error_message);

104 if(db_context ->retcode == SQL_SUCCESS || db_context ->

retcode == SQL_SUCCESS_WITH_INFO) {

105 printf("TABLE %s HAS BEEN CREATED SUCCESSFULLY \n",

tableName);

106 }

107 }

108

109 int insert_category(char categoryName [100] , DBContext*

db_context) {

110 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

111 printf(" ---> INSERTING CATEGORY: %s \n", categoryName);

112 char *query = "INSERT INTO category(nom) values (?)";

113 SQLBindParameter(db_context ->hstmt , 1, SQL_PARAM_INPUT ,

SQL_C_CHAR , SQL_VARCHAR , 0,0,(SQLCHAR *) categoryName ,

0, NULL);

114 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

45

115 char error_message [200];

116 sprintf(error_message , "ERROR INSERTING THE CATEGORY %s."

, categoryName);

117 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , error_message);

118 if(db_context ->retcode == SQL_SUCCESS || db_context ->

retcode == SQL_SUCCESS_WITH_INFO) {

119 printf("CATEGORY %s HAS BEEN CREATED SUCCESSFULLY \n"

, categoryName);

120 }

121 return get_last_inserted_id(db_context);

122 }

123 int insert_service(service service ,DBContext* db_context) {

124 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

125 printf(" ---> INSERTING Service: %s \n", service.

nom_service);

126 char *query = "INSERT INTO services(nom ,prix , category_id

, admin_id) values (?,?,?,1)"; // Supposing there is

only one admin using the system

127 SQLBindParameter(db_context ->hstmt , 1, SQL_PARAM_INPUT ,

SQL_C_CHAR , SQL_VARCHAR , 0,0,(SQLCHAR *) service.

nom_service , 0, NULL);

128 SQLBindParameter(db_context ->hstmt , 2, SQL_PARAM_INPUT ,

SQL_C_DOUBLE , SQL_DOUBLE , 0,0 ,&service.prix_service ,

0, NULL);

129 SQLBindParameter(db_context ->hstmt , 3, SQL_PARAM_INPUT ,

SQL_INTEGER , SQL_INTEGER , 0,0 ,&service.

categorie_service_id , 0, NULL);

130 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

131 char error_message [200];

132 sprintf(error_message , "ERROR INSERTING THE SERVICE %s.",

service.nom_service);

133 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , error_message);

134 if(db_context ->retcode == SQL_SUCCESS || db_context ->

retcode == SQL_SUCCESS_WITH_INFO) {

135 printf("SERVICE %s HAS BEEN CREATED SUCCESSFULLY \n",

service.nom_service);

136 }

137 return get_last_inserted_id(db_context);

138 }

139

140

46

141

142

143 int get_entity_count(char* entity , DBContext* db_context) {

144 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

145 char query [100] = "SELECT count (*) FROM ";

146 strcat(query , entity);

147 printf("query: %s \n", query);

148 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

149 char err [70] = "ERROR RETREVING COUNT ";

150 strcat(err , entity);

151 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , err);

152 SQLINTEGER countRowsInCategoryTable; // Buffer to hold

table names

153 SQLLEN indicator; // Indicator for NULL values

154 SQLFetch(db_context ->hstmt);

155 SQLGetData(db_context ->hstmt , 1, SQL_INTEGER , &

countRowsInCategoryTable , sizeof(

countRowsInCategoryTable), &indicator);

156 return countRowsInCategoryTable;

157 }

158

159 void get_categories(DBContext* db_context) {

160 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

161 char* query = "SELECT category_id , nom FROM category";

162 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

163 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "RETRIEVING ALL CATEGORIES");

164 SQLLEN indicator; // Indicator for NULL values

165 int i = 0;

166 while (SQLFetch(db_context ->hstmt) != SQL_NO_DATA) {

167 int category_id;

168 char nom [100];

169 SQLGetData(db_context ->hstmt , 1, SQL_INTEGER , &

category_id , sizeof(category_id), &indicator);

170 SQLGetData(db_context ->hstmt , 2, SQL_C_CHAR , nom ,

sizeof(nom), &indicator);

171 printf("ID = %d \t Nom = %s\n",category_id , nom);

172 i++;

173 }

174 }

47

175 void get_services(DBContext* db_context) {

176 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

177 char* query = "SELECT s.service_id , s.nom , a.nom , a.

prenom , c.nom , s.prix FROM services as s JOIN category

as c on c.category_id = s.category_id JOIN admin as a

ON a.admin_id = s.admin_id";

178 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

179 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "RETRIEVING ALL SERVICES");

180 SQLLEN indicator; // Indicator for NULL values

181 while (SQLFetch(db_context ->hstmt) != SQL_NO_DATA) {

182 int service_id;

183 double service_price;

184 char serviceName [100]; // maybe change

185 char adminNom [100]; // maybe change

186 char adminPrenom [100]; // maybe change

187 char categorieName [100]; // maybe change

188 SQLGetData(db_context ->hstmt , 1, SQL_INTEGER , &

service_id , sizeof(service_id), &indicator);

189 SQLGetData(db_context ->hstmt , 2, SQL_C_CHAR ,

serviceName , sizeof(serviceName), &indicator);

190 SQLGetData(db_context ->hstmt , 3, SQL_C_CHAR , adminNom

, sizeof(adminNom), &indicator);

191 SQLGetData(db_context ->hstmt , 4, SQL_C_CHAR ,

adminPrenom , sizeof(adminPrenom), &indicator);

192 SQLGetData(db_context ->hstmt , 5, SQL_C_CHAR ,

categorieName , sizeof(categorieName), &indicator);

193 SQLGetData(db_context ->hstmt , 6, SQL_DOUBLE , &

service_price , sizeof(service_price), &indicator);

194 printf("ID : %d | Nom : %s | Prix : %.2f | Categorie

: %s | Ajoutee par: %s %s\n",service_id ,

serviceName , service_price , categorieName ,

adminPrenom , adminNom);

195 }

196 }

197 void insert_default_categories(DBContext* db_context) {

198 // SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

199 int countCategories = get_entity_count("category",

db_context);

200 if(countCategories == 0) {

201 printf("\n----------------- INSERTING DEFAULT

CATEGORIES -----------------\n");

48

202 insert_category("Informatique", db_context);

203 insert_category("Electricite", db_context);

204 insert_category("Etudes", db_context);

205 insert_category("Restauration", db_context);

206 insert_category("Coiffure", db_context);

207 } else {

208 printf("%d Default categories were found \n",

countCategories);

209 get_categories(db_context);

210 }

211 }

212 void insert_default_admin(DBContext* db_context) {

213 int countAdmins = get_entity_count("admin", db_context);

214 if(countAdmins == 0) {

215 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

216 printf(" ---> INSERTING ADMIN: %s \n", "Ahmed Ben

Ahmed");

217 char *query = "INSERT INTO admin(nom , prenom) values

(?,?)"; // Supposing there is only one admin using

the system

218 SQLBindParameter(db_context ->hstmt , 1,

SQL_PARAM_INPUT , SQL_C_CHAR , SQL_VARCHAR , 0,0,(

SQLCHAR *) "BEN_AHMED", 0, NULL);

219 SQLBindParameter(db_context ->hstmt , 2,

SQL_PARAM_INPUT , SQL_C_CHAR , SQL_VARCHAR , 0,0,(

SQLCHAR *) "AHMED", 0, NULL);

220 db_context ->retcode = SQLExecDirect(db_context ->hstmt

, (SQLCHAR *)query , SQL_NTS);

221 char *error_message;

222 sprintf(error_message , "ERROR INSERTING THE Admin %s.

", "Ahmed Ben Ahmed");

223 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , error_message);

224 printf("ADMIN %s HAS BEEN CREATED SUCCESSFULLY \n", "

Ahmed Ben Ahmed");

225 }

226

227 }

228 void show_tables(DBContext* db_context) {

229 char* query = "SHOW TABLES";

230 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

231 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "Error Retreiving all the tables

49

existed on the database.");

232 SQLCHAR tableName [256]; // Buffer to hold table names

233 SQLLEN indicator; // Indicator for NULL values

234

235 printf("Tables in the database :\n");

236 printf(" ------------------------\n");

237

238 // Fetch each row of the result

239 while (SQLFetch(db_context ->hstmt) != SQL_NO_DATA) {

240 SQLGetData(db_context ->hstmt , 1, SQL_C_CHAR ,

tableName , sizeof(tableName), &indicator);

241 printf("%s\n", tableName); // Print the table name

242 }

243

244 printf(" ------------------------------\n");

245 }

246 void init_tables(DBContext* db_context) {

247 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

248 init_table("Admin",

249 "CREATE TABLE IF NOT EXISTS admin(admin_id INT

PRIMARY KEY AUTO_INCREMENT , nom VARCHAR (45) NOT

NULL , prenom VARCHAR (45) NOT NULL)",

250 db_context);

251 init_table("Client",

252 "CREATE TABLE IF NOT EXISTS client(client_id INT

PRIMARY KEY AUTO_INCREMENT , nom VARCHAR (45) NOT

NULL , prenom VARCHAR (45) NOT NULL)",

253 db_context); // Si On va implementez la fonction de

log in des utilisateurs.

254

255 init_table("Category",

256 "CREATE TABLE IF NOT EXISTS category(category_id INT

PRIMARY KEY AUTO_INCREMENT , nom VARCHAR (45) NOT

NULL)",

257 db_context);

258 init_table("Services",

259 "CREATE TABLE IF NOT EXISTS services(service_id INT

PRIMARY KEY AUTO_INCREMENT , nom VARCHAR (45) NOT NULL ,

prix DOUBLE NOT NULL , admin_id INT NOT NULL ,

category_id INT , FOREIGN KEY (admin_id) references

admin(admin_id) on delete cascade on update restrict ,

FOREIGN KEY (category_id) REFERENCES category(

category_id) on delete cascade on update restrict)",

260 db_context);

50

261 init_table("Commands",

262 "CREATE TABLE IF NOT EXISTS commands(service_id INT ,

client_id INT , FOREIGN KEY (client_id) references

client(client_id) on delete cascade on update restrict

, FOREIGN KEY (service_id) references services(

service_id) on delete cascade on update restrict)",

263 db_context);

264 // Execute an SQL query

265 show_tables(db_context);

266 insert_default_admin(db_context);

267 insert_default_categories(db_context);

268 }

269 int get_last_inserted_id(DBContext* db_context) {

270 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

271 char *id_query = "SELECT LAST_INSERT_ID ()";

272 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)id_query , SQL_NTS);

273 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "ERROR RETRIEVING LAST INSERTED ID");

274

275 SQLINTEGER last_inserted_id;

276 SQLLEN indicator;

277 SQLFetch(db_context ->hstmt);

278 SQLGetData(db_context ->hstmt , 1, SQL_INTEGER , &

last_inserted_id , sizeof(last_inserted_id), &indicator

);

279 return last_inserted_id;

280 }

281 void connect_to_database(DBContext* db_context) {

282 // Allocate environment handle

283 db_context ->retcode = SQLAllocHandle(SQL_HANDLE_ENV ,

SQL_NULL_HANDLE , &db_context ->env);

284 check_error(db_context ->retcode , db_context ->env ,

SQL_HANDLE_ENV , "connect_to_database - SQLAllocHandle"

);

285

286 // Set the ODBC version

287 db_context ->retcode = SQLSetEnvAttr(db_context ->env ,

SQL_ATTR_ODBC_VERSION , (SQLPOINTER)SQL_OV_ODBC3 , 0);

288 check_error(db_context ->retcode , db_context ->env ,

SQL_HANDLE_ENV , "connect_to_database - SQLSetEnvAttr")

;

289

290 // Allocate connection handle

51

291 db_context ->retcode = SQLAllocHandle(SQL_HANDLE_DBC ,

db_context ->env , &db_context ->dbc);

292 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "connect_to_database - SQLAllocHandle

");

293

294 // Connect to the database

295 SQLCHAR connStr [] = "DRIVER ={C:\\ Program Files\\ MySQL\\

Connector ODBC 8.1\\ myodbc8w.dll}; SERVER=localhost;

PORT =3306; DATABASE=test;USER=root;PASSWORD =;";

296 db_context ->retcode = SQLDriverConnect(db_context ->dbc ,

NULL , connStr , SQL_NTS , NULL , 0, NULL ,

SQL_DRIVER_COMPLETE);

297 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "connect_to_database -

SQLDriverConnect");

298

299 printf("Connected successfully to MySQL database !\n");

300 }

301

302

303

304 void menu_admin(DBContext* db_context) {

305 int choix;

306 while (1) {

307 printf("\nMenu Admin :\n");

308 printf("1. Ajouter un service\n");

309 printf("2. Afficher tous les services\n");

310 printf("3. Ajouter une categorie\n");

311 printf("4. Retour au menu principal\n");

312 printf("Votre choix : ");

313

314 if (scanf("%d", &choix) != 1) {

315 printf("Entree invalide. Veuillez reessayer .\n");

316 while (getchar () != ’\n’);

317 continue;

318 }

319

320 switch (choix) {

321 case 1: addService(db_context); break;

322 case 2: afficherServices(db_context); break;

323 case 3: addCategorie(db_context); break;

324 case 4: return;

325 default:

52

326 printf("Choix invalide. Veuillez reessayer .\n

");

327 }

328 }

329 }

330

331 void addCategorie(DBContext* db_context) {

332 categorie categorie;

333 printf("\nAjouter le nom de la categorie : ");

334 while (getchar () != ’\n’);

335 fgets(categorie.nom , sizeof(categorie.nom), stdin);

336 categorie.nom[strcspn(categorie.nom , "\n")] = ’\0’;

337 insert_category(categorie.nom , db_context);

338 printf("Categorie ’%s’ ajoutee avec succes !\n",

categorie.nom);

339 }

340

341 categorie* getCategorieById(int id_categorie , DBContext*

db_context) {

342 categorie *categorie;

343 if((categorie = malloc(sizeof(categorie))) == NULL)

return NULL;

344 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

345 char* query = "SELECT category_id , nom from category

where category_id = ?";

346 SQLBindParameter(db_context ->hstmt , 1, SQL_PARAM_INPUT ,

SQL_C_LONG , SQL_INTEGER ,0, 0,&id_categorie , 0 , NULL);

347 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

348 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "Getting category by id");

349 SQLLEN indicator; // Indicator for NULL values

350 SQLFetch(db_context ->hstmt);

351 SQLGetData(db_context ->hstmt , 1, SQL_INTEGER , &categorie

->id_categorie , sizeof(categorie ->id_categorie), &

indicator);

352 SQLGetData(db_context ->hstmt , 2, SQL_CHAR , &categorie ->

nom , sizeof(categorie ->nom), &indicator);

353 return categorie;

354 }

355 service* getServiceById(int service_id , DBContext* db_context

) {

356 service *service;

53

357 if((service = malloc(sizeof(service))) == NULL) return

NULL;

358 SQLAllocHandle(SQL_HANDLE_STMT , db_context ->dbc , &

db_context ->hstmt);

359 char* query = "SELECT service_id , nom , prix from

services where service_id = ?";

360 SQLBindParameter(db_context ->hstmt , 1, SQL_PARAM_INPUT ,

SQL_C_LONG , SQL_INTEGER ,0, 0,&service_id , 0 , NULL);

361 db_context ->retcode = SQLExecDirect(db_context ->hstmt , (

SQLCHAR *)query , SQL_NTS);

362 check_error(db_context ->retcode , db_context ->dbc ,

SQL_HANDLE_DBC , "Getting Service by id");

363 SQLLEN indicator; // Indicator for NULL values

364 SQLFetch(db_context ->hstmt);

365 SQLGetData(db_context ->hstmt , 1, SQL_INTEGER , &service ->

id_service , sizeof(service ->id_service), &indicator);

366 SQLGetData(db_context ->hstmt , 2, SQL_CHAR , &service ->

nom_service , sizeof(service ->nom_service), &indicator)

;

367 SQLGetData(db_context ->hstmt , 3, SQL_DOUBLE , &service ->

prix_service , sizeof(service ->prix_service), &

indicator);

368 return service;

369 }

370

371 service* addService(DBContext* db_context) {

372 service *service;

373 if((service = malloc(sizeof(service))) == NULL) return

NULL;

374 printf("\nAjouter le nom du service : ");

375 while (getchar () != ’\n’);

376 fgets(service ->nom_service , sizeof(service ->nom_service),

stdin);

377 service ->nom_service[strcspn(service ->nom_service , "\n")]

= ’\0’;

378

379 printf("Ajouter le prix du service : ");

380 if (scanf("%lf", &service ->prix_service) != 1) {

381 printf("Entree invalide pour le prix. Service non

ajoute .\n");

382 while (getchar () != ’\n’);

383 return NULL;

384 }

385 int id_categorie;

386 while (1) {

54

387 printf("Veuillez choisir une categorie dans la liste

ci-dessous :\n");

388 get_categories(db_context);

389

390 printf("Entrez l’ID de la categorie (ou 0 pour

ajouter une nouvelle categorie) : ");

391 if (scanf("%d", &id_categorie) != 1) {

392 printf("Entree invalide. Veuillez reessayer .\n");

393 while (getchar () != ’\n’);

394 continue;

395 }

396

397 if (id_categorie == 0) {

398 categorie categorie;

399 printf("\nAjouter le nom de la nouvelle categorie

: ");

400 while (getchar () != ’\n’);

401 fgets(categorie.nom , sizeof(categorie.nom), stdin

);

402 categorie.nom[strcspn(categorie.nom , "\n")] = ’\0

’;

403 id_categorie = insert_category(categorie.nom ,

db_context);

404 printf("Nouvelle categorie ajoutee avec s u c c s

aved ID: %d !\n",id_categorie);

405 break;

406 }

407

408 int categorie_trouvee = getCategorieById(id_categorie

, db_context) != NULL;

409

410 if (categorie_trouvee) {

411 break;

412 }

413 printf("Categorie invalide. Veuillez reessayer .\n");

414 }

415 service ->categorie_service_id = id_categorie;

416 insert_service (*service , db_context);

417 printf("Service ajoute avec succes !\n");

418 }

419

420 void afficherServices(DBContext* db_context) {

421 int count = get_entity_count("services", db_context);

422 if (count == 0) {

423 printf("Aucun service disponible .\n");

55

424 return;

425 }

426 get_services(db_context);

427 }

428

429

430 void menu_client(DBContext* db_context) {

431 int choix;

432 do {

433 printf("\nMenu Client :\n");

434 printf("1. Voir tous les services\n");

435 printf("2. Generer une facture\n");

436 printf("3. Retour au menu principal\n");

437 printf("Votre choix : ");

438 if (scanf("%d", &choix) != 1) {

439 printf("Entree invalide. Veuillez reessayer .\n");

440 while (getchar () != ’\n’);

441 continue;

442 }

443

444 switch (choix) {

445 case 1:

446 afficherServices(db_context);

447 break;

448 case 2:

449 genererFacture(db_context);

450 break;

451 case 3:

452 printf("Retour au menu principal ...\n");

453 break;

454 default:

455 printf("Choix invalide. Veuillez reessayer .\n

");

456 }

457 } while (choix != 3);

458 }

459

460 void genererFacture(DBContext* db_context) {

461 // option reintilizer la facutre pour commencez au debut

462 // stockage des services selectionnez pour leur afficher

dans la facture.

463

464 double montant_total = 0.0;

465 int id_service;

466

56

467 printf("\nGeneration de facture\n");

468 printf("\nListe des services disponibles :\n");

469 afficherServices(db_context);

470

471 do {

472 printf("Entrez l’ID du service que vous souhaitez

ajouter (0 pour terminer) : ");

473 if (scanf("%d", &id_service) != 1) {

474 printf("Entree invalide. Veuillez reessayer .\n");

475 while (getchar () != ’\n’);

476 continue;

477 }

478

479 if (id_service == 0) {

480 break;

481 }

482

483 service *service_trouve = getServiceById(id_service ,

db_context);

484 montant_total += service_trouve ->prix_service;

485 if (service_trouve == NULL) {

486 printf("Service introuvable. Essayez avec un ID

valide .\n");

487 }

488

489 } while (id_service != 0);

490

491 printf("\nMontant total de la facture : %.2f\nMerci pour

votre visite !", montant_total);

492 }

Listing 18: Code pour la nouvelle fonction d’affichage des services

References

1. ODBC Installation (Version 8.1): https://downloads.mysql.com/

archives/c-odbc/.

2. MySQL Workbench Documentation: https://dev.mysql.com/doc/

workbench/en/.

57

https://downloads.mysql.com/archives/c-odbc/
https://downloads.mysql.com/archives/c-odbc/
https://dev.mysql.com/doc/workbench/en/
https://dev.mysql.com/doc/workbench/en/

	Introduction et Contexte
	Objectifs
	Outils et Technologies
	Préparation de l'environnement (Si l'on travaille avec du code qui intègre une base de données)
	Installation d'ODBC
	Inclusion dans un Projet CMake

	Conception du Système
	Méthodologie
	Répartition des tâches
	Phases de développement

	Implémentation
	Vue d'ensemble du code
	Fonctions clés
	Extraits de code pour la partie CLI uniquement
	L'interface
	Partie Admin
	Extraits de code pour la partie base de donnees uniquement
	Extraits de code pour les deux parties combinées
	Service Management Interface - CLI and MySQL Workbench

	Développement et Intégration
	Gestion des Erreurs

	Résultats
	Conclusion et Perspectives
	Défis rencontrés

