Systeme de Facturation Client

Réalisé par:
#—

BEN AHMED AHMED
AIT ELHAJ GHIZLANE

Encadré par:

Pr. Jaouad Danane

1ere année ISIBD 24/25

Contents

1__Introduction et Contextel 3
2 Objectifs| 3
[3 Outils et Technologies| 3
4 Préparation de ’environnement (Si ’on travaille avec du |
code qui integre une base de données)| 4
4.1 Installation A'ODBCH o000 4
[4.2 Inclusion dans un Projet CMakel. 4
[Conception du Systeme| 5
[6 Méthodologie| 5
[6.1 Reépartition des taches| 5
[6.2 Phases de développement|. 5
(7 Implémentation| 6
(.1 Vue d’ensemble ducodel 6
[[2 Fonctionscléd 6
[7.3 Extraits de code pour la partie CLI uniquement| 7
(.4 Dinterfacelo 17
[r.b Partie Adminl oo 17
[7.6 Extraits de code pour la partie base de donnees uniquement| . 20
[7.7 Extraits de code pour les deux parties combinées| 25
[7.8 Service Management Interface - CLI and MySQL Workbench| . 28
8 Deéveloppement et Intégration| 31
8.1 Gestiondes Frreurso 31
9__Resultats| 32
(L0 Conclusion et Perspectives| 32
(11 Defis rencontres| 33

1 Introduction et Contexte

Ce projet vise a simuler un systeme de facturation pour n’importe quel ser-
vice. Il permet d’ajouter des services consommés (nom, prix, quantité) et de
générer une facture détaillée avec un total final. Ce projet a été développé
en collaboration avec un collegue, et il a pour but de démontrer I'intégration
de fonctionnalités liées a la gestion des services et a la facturation.

2 Objectifs

Les objectifs principaux de ce projet étaient les suivants :

e Ajouter des services consommés avec des informations spécifiques (nom,
prix, quantité).

e Calculer et afficher une facture détaillée.

e Ajouter une fonctionnalité de catégorisation des services pour améliorer
I’expérience utilisateur.

e Diviser le programme en deux menus distincts : un pour ’administrateur
et un pour le client.

3 Outils et Technologies

Le projet a été développé avec les outils et technologies suivants :

e IDE: CLion (utilis¢é par AHMED BENAHMED) et VSCode (utilisé
par AITELHAJ GHIZLANE).

e Bibliotheques C:

— #include jwindows.hy,
— #include jsqlext.hy

— #include jsqltypes.hy,
— #include jsql.hy,

— #include jstdio.hy,

— #include jstdlib.hy,

e Base de données: MySQL Workbench pour la verification et gestion
de la base de données.

4 Préparation de ’environnement (Sil’on tra-
vaille avec du code qui integre une base de
données)

Pour configurer un projet qui utilise ODBC avec CMake, suivez les étapes
suivantes :

4.1 Installation A’ODBC

1. Téléchargez et installez le pilote MySQL ODBC approprié pour votre
systeme depuis le site officiel MySQL. (Dans notre cas 8.1) https:
//downloads.mysql.com/archives/c-odbc/.

e Utilisez le fichier MSI pour une installation facile.

2. Vérifiez que le pilote est installé correctement en ouvrant le Gestion-
naire ODBC et en consultant 'onglet Drivers .

3. Configurez une Source de Données (DSN) via le Gestionnaire ODBC.

e Assurez-vous que le test DSN passe avec succes.

4.2 Inclusion dans un Projet CMake

1. Assurez-vous que les bibliotheques et fichiers d’en-téte nécessaires a
ODBC sont disponibles sur votre systeme.

2. Ajoutez les instructions suivantes a votre fichier CMakeLists.txt :

find_package (ODBC REQUIRED)

target_link_libraries(${PROJECT_NAME} PRIVATE QODBC: :0DBC)

3. Ajoutez les fichiers sources contenant votre code reliant la base de
données au projet dans CMakeLists.txt.

4

https://downloads.mysql.com/archives/c-odbc/
https://downloads.mysql.com/archives/c-odbc/

5 Conception du Systeme

Dans la phase de conception, nous avons décidé d’ajouter une fonctionnalité
de catégorisation des services, bien qu’elle ne fit pas initialement demandée.
Cette fonctionnalité permet de classer les services en différentes catégories
afin d’améliorer I'expérience utilisateur et rendre l'interface plus intuitive.
Nous avons également divisé le programme en deux menus distincts :

e Menu Admin : Permet a 'administrateur d’ajouter des services, af-
ficher les services existants et ajouter des catégories.

e Menu Client : Permet au client de visualiser les services disponibles
et de générer une facture.

6 Meéthodologie

6.1 Répartition des taches

e Réunion initiale : Les deux partenaires ont revu les exigences du projet
et créé le MCD pour la conception du schéma de base de données.

e AITELHAJ GHIZLANE : Développement du programme CLI de base
et de sa logique.

e BEN AHMED AHMED : Intégration de la base de données, y compris
la connexion avec MySQL et la création des fonctions nécessaires pour
I’initialisation des tables, I'insertion des données et les requétes.

6.2 Phases de développement

1. Développement du programme CLI.
2. Intégration des fonctionnalités de base de données.

3. Validation des fonctionnalités CLI indépendantes de la base de données
avant I'intégration finale.

7 Implémentation

7.1 Vue d’ensemble du code

Le programme est structuré autour de deux modules principaux :

e Fonctionnalité CLI : Gere l'interaction avec 'utilisateur et la logique
pour gérer les catégories, les services et les factures.

e Opérations sur la base de données : Assure le stockage persistant et la

récupération des données via MySQL en utilisant ODBC.

7.2 Fonctions clés

e connect_to_database : Etablit la connexion & la base de données.

e init tables : Crée les tables si elles n’existent pas.

e addService : Ajoute un service sélectionné a la facture en cours.

e genererFacture : Génere une facture détaillée avec un cotit total.

e insert_category : Insere une nouvelle catégorie dans la base de données.
e insert service : Inseére un nouveau service dans la base de données.

e get_entity_count : Récupere le nombre d’entités d'un type spécifique
dans la base de données.

e get_categories : Récupere toutes les catégories de la base de données.

e insert_default_categories : Insere les catégories par défaut si au-
cune catégorie n’existe.

e insert_default_admin : Insere I'administrateur par défaut si aucun
administrateur n’existe.

e show_tables : Affiche toutes les tables de la base de données.
e get_last_inserted_id : Récupere le dernier identifiant inséré.

e menu_admin : Affiche le menu d’administration pour gérer les services
et les catégories.

© W N s W N

T T S S o S~ SN S SO SO
S © N O U oA W N = O

21
22
23
24
25
26
27
28
29
30
31
32
33

e menu client : Affiche le menu client pour consulter les services et
générer des factures.

addCategorie : Ajoute une nouvelle catégorie.

afficherServices : Affiche tous les services disponibles.

7.3 Extraits de code pour la partie CLI uniquement

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct categorie {
int id_categorie;
char nom[50];

} categorie;

typedef struct service {
int id_service;
char nom_service [50];
double prix_service;
categorie categorie_service;
} service;

typedef struct client {
int id_client;
char nom_client [50];
double montant_total;
char details_facture[500];
} client;

#define MAX_SERVICES 100
#define MAX_CATEGORIES 10
#define MAX_CLIENTS 2

service services [MAX_SERVICES];
categorie categories[MAX_CATEGORIES] = {
{1, "Coiffure"},
{2, "Electricite"},
{3, "Etudes"},
{4, "Restauration"},

genererFacture : Génere la facture finale basée sur les services sélectionnés.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75

{5, "Informatique"}

}s

client clients [MAX_CLIENTS];

int count = O0;

int categorie_count = 5;

int client_count = 0; // Nombre de clients enregistr s

void menu_admin () ;

void menu_client () ;

void addService () ;

void afficherServices();

void afficherCategories();

void addCategorie();

void genererFacture(int id_client);

void afficherFacture (double montant, char *details, char *
nom_client) ;

int findClientByName (char *nom_client);

void addClient () ;

void supprimerService();

void supprimerCategorie();

int main() {
int choix;
printf ("Bonjour !\n");

while (1) {
printf ("\nMerci de selectionner si vous etes
admin ou client :\n");
printf ("1. Admin\n");
printf ("2. Client\n");
printf ("3. Quitter\n");
printf ("Votre choix : ");

if (scanf("%d", &choix) != 1) {
printf ("Entree invalide. Veuillez
reessayer.\n");
while (getchar () != ’\n’);
continue;

}

switch (choix) {
case 1: menu_admin(); break;
case 2: menu_client(); break;
case 3:
printf ("Au revoir !\n");

76
7
78

79
80
81
82

© 00 N O U s W N =

N e
= W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

3

return O;

default:

printf ("Choix invalide. Veuillez
reessayer.\n");

return O;

Listing 1: Code pour la fonction main

void menu_admin() {

int choix;
while (1) {

printf ("\nMenu Admin :\n");

printf ("1. Ajouter un service\n");

printf ("2. Afficher tous les services\n");
printf ("3. Ajouter une categoriel\n");
printf ("4. Supprimer un service\n");
printf ("5. Supprimer une categoriel\n");
printf ("6. Retour au menu principall\n");
printf ("Votre choix : ");

if (scanf("%d", &choix) !'= 1) {
printf ("Entree invalide. Veuillez
reessayer.\n");
while (getchar() != ’\n’);
continue;

}

switch (choix) {

case 1: addService(); break;

case 2: afficherServices(); break;
case 3: addCategorie(); break;

case 4: supprimerService(); break;
case 5: supprimerCategorie(); break;

case 6: return;

default:

printf ("Choix invalide. Veuillez
reessayer.\n");

Listing 2: Code pour le menu administrateur

© W N o s W N

=
= o

12
13

14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33

34
35
36

37
38
39

void menu_client () {
int choix;
char nom_client [50];

// Demande du nom du client
printf ("Veuillez entrer votre nom : ");
scanf ("%s", nom_client);

int id_client = findClientByName (nom_client);
if (id_client == -1) {

do

printf ("Client introuvable. Enregistrement 4’
un nouveau client...\n");

addClient (nom_client);

id_client = client_count - 1; // Nouvel ID
du client

printf ("\nMenu Client :\n");
printf ("1. Voir tous les services\n");
printf ("2. Generer une facture\n");
printf ("3. Retour au menu principall\n");
printf ("Votre choix : ");
if (scanf ("%d", &choix) != 1) {
printf ("Entree invalide. Veuillez
reessayer.\n");
while (getchar() !'= ’\n’);
continue;

}

switch (choix) {

case 1:

afficherServices () ;

break;

case 2:

genererFacture (id_client); // Passe 1
>ID du client la fonction

break;

case 3:

printf ("Retour au menu principal...\n
")

break;

default:

printf ("Choix invalide. Veuillez
reessayer.\n");

10

40
41
42

gt W N =

© 0w N O3

10
11
12
13
14
15

16
17
18

19
20
21
22
23
24
25

26
27
28
29
30
31

32
33

34

}
} while (choix != 3);

Listing 3: Code pour le menu client

void supprimerService () {
int id_service;

printf ("\nEntrez 1’ID du service a supprimer : ");
if (scanf("%d", &id_service) !'= 1) {
printf ("Entree invalide. Veuillez reessayer.\
n'");
while (getchar () != ’\n’);
return;
}
int found = 0;
for (int i = 0; i < count; i++) {
if (services[i].id_service == id_service) {
for (int j = i; j < count - 1; j++) {
services[j] = services[j +
11;
}
count - -—;

printf ("Service avec ID %d supprim
avec succ s .\n", id_service);

found = 1;

break;

if (!found) {
printf ("Service introuvable avec 1°ID %d.\n",
id_service);

}

void supprimerCategorie() A
int id_categorie;

printf ("\nEntrez 1’ID de la categorie a supprimer "

)
if (scanf("’d", &id_categorie) != 1) {
printf ("Entree invalide. Veuillez reessayer.\
n'");
while (getchar() !'= ’\n’);

11

36
37
38
39
40
41

42

43

44
45
46

47
48
49
50
51
52
53

54
55
56
57
58
59

60
61
62
63
64
65

66

67
68

69

return;

}

// V rification de l’existence de la cat gorie
int found = 0;
for (int i = 0; i < categorie_count; i++) {
if (categories[i].id_categorie ==
id_categorie) {

for (int j = i; j < categorie_count -
1; j++) {
categories[j] = categories[]j
+ 11
}

categorie_count --;

printf ("Categorie avec ID %d
supprim e avec succ s.\n",
id_categorie);

found = 1;

break;

3

if (!'found) {
printf ("Categorie introuvable avec 1’ID %d.\n
", id_categorie);

}

void addCategorie() {
if (categorie_count >= MAX_CATEGORIES) {
printf ("Le nombre maximum de categories a ete
atteint.\n");

return;
}
printf ("\nAjouter le nom de la categorie : ");
while (getchar() != ’\n’);

fgets(categories[categorie_count].nom, sizeof (
categories[categorie_count].nom), stdin);

categories[categorie_count].nom[strcspn(categories|[
categorie_count].nom, "\n")] = ’\0’;

categories[categorie_count].id_categorie =

categorie_count + 1;
printf ("Categorie ’%s’ ajoutee avec succes !\n",

12

70
71
72
73
74
75

76
7
78
79
80
81

82

83
84
85

86

87
88
89
90
91
92

93
94
95
96

97
98

99
100
101
102

104
105

categories[categorie_count].nom);
categorie_count++;

}

void addService () {
if (count >= MAX_SERVICES) {
printf ("Le nombre maximum de services a ete
atteint.\n");

return;
}
printf ("\nAjouter le nom du service : ");
while (getchar() '= ’\n’);

fgets(services[count] .nom_service, sizeof (services]|[
count] .nom_service), stdin);
services [count] .nom_service[strcspn(services[count].

nom_service, "\n")] = ’\0’;
printf ("Ajouter le prix du service : ");
if (scanf ("%1f", &services[count].prix_service) != 1)
{

printf ("Entree invalide pour le prix. Service
non ajoute.\n");

while (getchar() != ’\n’);

return;

3

while (1) {
printf ("Veuillez choisir une categorie dans
la liste ci-dessous :\n");
afficherCategories ();

int id_categorie;
printf ("Entrez 1’ID de la categorie (ou O
pour ajouter une nouvelle categorie) : ");

if (scanf ("%d", &id_categorie) != 1) {

printf ("Entree invalide. Veuillez

reessayer .\n");
while (getchar() !'= ’\n’);
continue;

}

if (id_categorie == 0) {
addCategorie () ;
services [count].categorie_service =

13

categories [categorie_count - 1];

106 break;

107 }

108

109 int categorie_trouvee = 0;

110 for (int i = 0; i < categorie_count; i++) {

111 if (categories[i].id_categorie ==

id_categorie) {

112 services [count].
categorie_service =
categories[i];

113 categorie_trouvee = 1;

114 break;

115 }

116 }

117

118 if (categorie_trouvee) {

119 break;

120 } else {

121 printf ("Categorie invalide. Veuillez

reessayer.\n");

122 }

123 }

124

125 services[count].id_service = count + 1;

126 printf ("Service ajoute avec succes !\n");

127 count ++;

128 |}

129

130 |void afficherServices () {

131 if (count == 0) {

132 printf ("Aucun service disponible.\n");

133 return;

134 }

135

136 for (int i = 0; i < count; i++) {

137 printf ("ID : %d | Nom : %s | Prix : %.2f |

Categorie : %s\n",

138 services[i].id_service,

139 services[i] .nom_service,

140 services [i].prix_service,

141 services[i].categorie_service.nom);

142 }

143 |}

144

14

146
147
148

149
150

© o N o w»

10
11
12

13
14
15
16
17
18
19
20

21
22

-

@ s W N

void afficherCategories () {

printf ("\nListe des categories disponibles :\n");
for (int i = 0; i < categorie_count; i++) {
printf ("ID : %d | Nom : %s\n", categories[i].
id_categorie, categories[i].nom);

Listing 4: Code pour la gestion des services et categories

int findClientByName (char *nom_client) {

}

for (int i = 0; i < client_count; i++) {
if (strcmp(clients[i].nom_client, nom_client)
== 0) {

return i;

}

return -1;

void addClient (char *nom_client) {

if (client_count >= MAX_CLIENTS) {
printf ("Le nombre maximum de clients a ete
atteint.\n");

return;
}
clients[client_count].id_client = client_count + 1;
strcpy(clients[client_count].nom_client, nom_client);
clients[client_count].montant_total = 0.0;
clients[client_count].details_facture[0] = ’\0’;

printf ("Client ’%s’ ajoute avec succes !\n",
nom_client);
client_count ++;

Listing 5: Code pour la gestion des clients

void genererFacture (int id_client) {

double montant_total = 0.0;
int id_service;
char details_facture[500] = "";

printf ("\nGeneration de facture pour %s\n", clients]|
id_client].nom_client);

15

10
11

12
13

14
15
16
17
18
19
20
21
22
23
24

25

26

27
28

29

30
31
32
33
34
35
36

37
38
39
40
41

printf ("\nListe des services disponibles :\n");
afficherServices ();

do {
printf ("Entrez 1’ID du service que vous
souhaitez ajouter (0 pour terminer) : ");
if (scanf("%d", &id_service) !'= 1) {
printf ("Entree invalide. Veuillez
reessayer.\n");
while (getchar () !'= ’\n’);
continue;
}
if (id_service == 0) {
break;
}
int service_trouve = 0;
for (int i = 0; i < count; i++) {
if (services[i].id_service ==
id_service) {
montant_total += services[i].
prix_service;
sprintf (details_facture +
strlen(details_facture),
"Service: %s | Prix: %.2f\n",
services[i] .nom_service,
services[i].prix_service);
strcat (details_facture, "
e
nll
service_trouve = 1;
break;
}
}
if (!service_trouve) {
printf ("Service introuvable. Essayez
avec un ID valide.\n");
}
} while (id_service != 0);

afficherFacture (montant_total, details_facture,
clients[id_client] .nom_client) ;

16

42
43
44

45
46
47
48
49
50
51

}

void afficherFacture(double montant, char *details, char
nom_client) {

printf ("\n+-------- Facture ---------- +\n") ;
printf ("+-—---------— -~ +\n");
printf ("+-------- hs———=———-~- +\n", nom_client);
printf("+-—-----------————— - +\n");
printf ("%s\n", details);

printf ("\n+Total: +%.2f+\n", montant);
printf ("+--------"--————m +\n") ;

Listing 6: Code pour generer une facture

7.4 L’interface
7.5 Partie Admin

Bonjour !

Merci de selectionner si vous etes admin ou client
1. Admin

2. Client

3. Quitter

Votre choix

Menu Admin

1. Ajouter un service

2. Afficher tous les services
3. Ajouter une categorie

4. Supprimer un service

5. Supprimer une categorie

6. Retour au menu principal

v

otre choix

on choisit d’acceder en tant que Admin

17

Menu Admin

1. Ajouter un service

2. Afficher tous les services
3. Ajouter une categorie

4. Supprimer un service

5. Supprimer une categorie

6. Retour au menu principal
Votre choix : 1

Ajouter le nom du service : Coaching

Ajouter le prix du service : 500
Veuillez choisir une categorie dans la liste ci-dessous :

Liste des categories disponibles :

ID : 1 | Nom : Coiffure

ID : 2 | Nom : Electricite

ID : 3 | Nom : Etudes

ID : 4 | Nom : Restauration

ID : 5 | Nom : Informatique

Entrez 1'ID de la categorie (ou @ pour ajouter une nouvelle categorie) : 5
Service ajoute avec succes !

on choisit d’ajouter un service // on peut meme ajouter une nouvelle
categorie si elle n’existe pas

Menu Admin :

1. Ajouter un service

2. Afficher tous les services
3. Ajouter une categorie

4. Supprimer un service

5. Supprimer une categorie

6. Retour au menu principal
Votre choix : 4

Entrez 1'ID du service a supprimer : 1

Service avec ID 1 supprimlU avec succhbs.

Menu Admin :
Ajouter un service
Afficher tous les services
Ajouter une categorie
Supprimer un service
Supprimer une categorie

. Retour au menu principal
Votre choix : 2
Aucun service disponible.

18

on peut meme supprimer un service / categorie

Merci de selectionner si vous etes admin ou client

1. Admin

2. Client

3. Quitter

Votre choix : 2

Veuillez entrer votre nom : Ghizlane

[Client introuvable. Enregistrement d'un nouveau client...
[Client 'Ghizlane' ajoute avec succes !

Menu Client

1. Voir tous les services
2. Generer une facture

3. Retour au menu principal
Votre choix : 2

Generation de facture pour Ghizlane

Liste des services disponibles
: 1 | Nom : coaching | Prix : 500.00 | Categorie : Informatique

Nom : conception et developpement des sites webs | Prix : 8000.00 | Categorie
Nom : design et creation multimedia | Prix : 5000.00 | Categorie : Informatique
Nom : soutien scolaire (Par matiere) | Prix 200.00 | Categorie : Etudes
Nom : preparation aux concours Post Bac | Prix 2000.00 | Categorie : Etudes
Nom : Redaction de CV | Prix : 20.00 | Categorie : Etudes
Nom : Brushing | Prix : 50.00 | Categorie : Coiffure
Nom : manicure | Prix : 100.00 | Categorie : Coiffure
Nom : livraison a domicile | Prix : 20.00 | Categorie : Livraison

Entrez 1'ID du service que vous souhaitez ajouter (@ pour terminer) : 1

Entrez 1'ID du service que vous souhaitez ajouter (0 pour terminer)

Entrez 1'ID du service que vous souhaitez ajouter (0@ pour terminer)

Informatique

on accede maintenant en tant que client pour voir les services et avoir une

facture

Entrez 1'ID du service que vous souhaitez ajouter (@ pour terminer)
Entrez 1'ID du service que vous souhaitez ajouter (@ pour terminer)

manicure | Prix

+620.00+

on prend notre facture

19

10
11

12

13

Menu Client

1. Voir tous les services
2. Generer une facture

3. Retour au menu principal
Votre choix : 3

Retour au menu principal...

Merci de selectionner si vous etes admin ou client
1. Admin

2. Client

3. Quitter

Votre choix

Au revoir !

Et on quitte

7.6 Extraits de code pour la partie base de donnees
uniquement

Les extraits de code suivants illustrent des parties cles de I'integration de la
base de donnees :

void connect_to_database (DBContext* db_context) {

db_context->retcode = SQLAllocHandle (SQL_HANDLE_ENV,
SQL_NULL_HANDLE, &db_context->env);

check_error (db_context->retcode, db_context->env,
SQL_HANDLE_ENV, "connect_to_database - SQLAllocHandle"
);

db_context->retcode = SQLSetEnvAttr (db_context->env,
SQL_ATTR_ODBC_VERSION, (SQLPOINTER)SQL_OV_0ODBC3, 0);

check_error (db_context->retcode, db_context->env,
SQL_HANDLE_ENV, "connect_to_database - SQLSetEnvAttr")

’

db_context->retcode = SQLAllocHandle (SQL_HANDLE_DBC,
db_context->env, &db_context->dbc);

check_error (db_context ->retcode, db_context->dbc,
SQL_HANDLE_DBC, "connect_to_database - SQLAllocHandle
")

20

14
15

16

17

18
19
20

10
11

12
13
14

15
16

// Connect to the database

SQLCHAR connStr[] = "DRIVER={C:\\Program Files\\MySQL\\
Connector O0DBC 8.1\\myodbc8w.dll}; SERVER=1localhost;
PORT=3306; DATABASE=test ;USER=root ; PASSWORD=;";

db_context ->retcode = SQLDriverConnect (db_context->dbc,
NULL, connStr, SQL_NTS, NULL, O, NULL,
SQL_DRIVER_COMPLETE) ;

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "connect_to_database -
SQLDriverConnect");

printf ("Connected successfully to MySQL database!\n");

Listing 7: Code pour la connexion a la base de donnees

void init_tables (DBContext* db_context) {
SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context->hstmt) ;
init_table("Admin",
"CREATE TABLE IF NOT EXISTS admin(admin_id INT
PRIMARY KEY AUTO_INCREMENT, nom VARCHAR (45) NOT
NULL, prenom VARCHAR (45) NOT NULL)",
db_context) ;
init_table("Client",
"CREATE TABLE IF NOT EXISTS client(client_id INT
PRIMARY KEY AUTO_INCREMENT, nom VARCHAR (45) NOT
NULL, prenom VARCHAR (45) NOT NULL)",
db_context); // Si On va implementez la fonction de
log in des utilisateurs.

init_table("Category",

"CREATE TABLE IF NOT EXISTS category(category_id INT
PRIMARY KEY AUTO_INCREMENT, nom VARCHAR (45) NOT
NULL) ",

db_context) ;

init_table("Services",

"CREATE TABLE IF NOT EXISTS services(service_id INT
PRIMARY KEY AUTO_INCREMENT, nom VARCHAR(45) NOT NULL,
prix DOUBLE NOT NULL, admin_id INT NOT NULL,
category_id INT, FOREIGN KEY (admin_id) references
admin (admin_id) on delete cascade on update restrict,
FOREIGN KEY (category_id) REFERENCES category (
category_id) on delete cascade on update restrict)",

db_context) ;

init_table("Commands",

21

17

18
19
20
21
22
23

= W

ot

10

11

12
13

D vt e W

"CREATE TABLE IF NOT EXISTS commands (service_id INT,
client_id INT, FOREIGN KEY (client_id) references
client(client_id) on delete cascade on update restrict
, FOREIGN KEY (service_id) references services/(
service_id) on delete cascade on update restrict)",

db_context) ;

// Execute an SQL query

show_tables (db_context) ;

insert_default_admin(db_context) ;

insert_default_categories (db_context);

Listing 8: Code pour l'initialisation des tables

void init_table(char* tableName, charx* tableQuery, DBContext*

db_context) {

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context ->hstmt) ;

printf ("CREATING TABLE Ys ---> " tableName) ;

db_context->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) tableQuery, SQL_NTS);
char error_message [100];

sprintf (error_message, "Error Creating the table Ys.",
tableName) ;

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, error_message);

if (db_context->retcode == SQL_SUCCESS || db_context->
retcode == SQL_SUCCESS_WITH_INFO0) {
printf ("TABLE %s HAS BEEN CREATED SUCCESSFULLY \n",

tableName) ;

Listing 9: Code pour l'initialisation de chaque table

int

get_entity_count (char* entity, DBContext* db_context) {

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context->hstmt) ;

char query[100] = "SELECT count (*) FROM ";

strcat (query, entity);

printf ("query: %s \n", query);

db_context ->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) query, SQL_NTS);

char err [70] = "ERROR RETREVING COUNT ";

22

10

11
12
13

14
15

© 0 N 3«

10
11

12
13
14
15
16
17
18
19

20

21

22

strcat (err, entity);

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, err);

SQLINTEGER countRowsInCategoryTable;

SQLLEN indicator;

SQLFetch(db_context ->hstmt) ;

SQLGetData(db_context->hstmt, 1, SQL_INTEGER, &
countRowsInCategoryTable, sizeof (
countRowsInCategoryTable), &indicator);

return countRowsInCategoryTable;

Listing 10: Code pour recuperer le nombre d’entites

void insert_default_categories (DBContext* db_context) {
int countCategories = get_entity_count("category",
db_context);
if (countCategories == 0) {
printf ("\n----------------- INSERTING DEFAULT
CATEGORIES ----------------- \n");
insert_category("Informatique", db_context);
insert_category("Electricite", db_context);
insert_category ("Etudes", db_context);
insert_category ("Restauration", db_context);
insert_category ("Coiffure", db_context);
} else {
printf (")d Default categories were found \n",
countCategories) ;
get_categories (db_context);
}
}
void insert_default_admin(DBContext* db_context) {
int countAdmins = get_entity_count("admin", db_context);

if (countAdmins == 0) {

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &

db_context->hstmt) ;

printf (" ---> INSERTING ADMIN: %s \n", "Ahmed
Ahmed") ;

char *query = "INSERT INTO admin(nom, prenom)
(7,7)";

SQLBindParameter (db_context->hstmt, 1,
SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,
SQLCHAR*) "BEN_AHMED", 0O, NULL);

23

Ben

values

0,0,(

23

24

25
26

27

28

29
30

© 0w N >

10

11

12

13

14

15

16

17

18

SQLBindParameter (db_context->hstmt, 2,
SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR, 0,0,(
SQLCHAR=*) "AHMED", 0, NULL);

db_context->retcode = SQLExecDirect (db_context->hstmt
, (SQLCHAR=*) query, SQL_NTS);

char *error_message;

sprintf (error_message, "ERROR INSERTING THE Admin Y%s.
", "Ahmed Ben Ahmed");

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, error_message);

printf ("ADMIN %s HAS BEEN CREATED SUCCESSFULLY \n", "
Ahmed Ben Ahmed");

Listing 11: Code pour ajouter les donnees par defaut

void get_services (DBContext* db_context) {

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context->hstmt) ;
char* query = "SELECT s.service_id, s.nom, a.nom, a.
prenom, c.nom, s.prix FROM services as s JOIN category
as ¢ on c.category_id = s.category_id JOIN admin as a
ON a.admin_id = s.admin_id";
db_context->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) query, SQL_NTS);
check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "RETRIEVING ALL SERVICES") ;
SQLLEN indicator;
while (SQLFetch(db_context->hstmt) !'= SQL_NO_DATA) {
int service_id;
double service_price;
char serviceName [100];
char adminNom [100];
char adminPrenom [100];
char categorieName [100];
SQLGetData(db_context->hstmt, 1, SQL_INTEGER, &
service_id, sizeof(service_id), &indicator);
SQLGetData(db_context->hstmt, 2, SQL_C_CHAR,
serviceName, sizeof (serviceName), &indicator);
SQLGetData(db_context->hstmt, 3, SQL_C_CHAR, adminNom
, sizeof (adminNom), &indicator);
SQLGetData(db_context->hstmt, 4, SQL_C_CHAR,
adminPrenom, sizeof (adminPrenom), &indicator);
SQLGetData(db_context->hstmt, 5, SQL_C_CHAR,
categorieName , sizeof (categorieName), &indicator);

24

19

20

21
22

Nl = N S

e e =
N O Ok W N = O

18
19
20
21
22
23
24
25
26
27
28
29

SQLGetData(db_context->hstmt, 6, SQL_DOUBLE, &

service_price, sizeof (service_price), &indicator);
printf("ID : %d | Nom : %s | Prix : %.2f | Categorie

%s | Ajoutee par: %s %s\n",service_id,
serviceName, service_price, categorieName,
adminPrenom, adminNom) ;

Listing 12: Code pour recuperer tous les services

7.7 Extraits de code pour les deux parties combinées

Il n’y a pas beaucoup de modifications dans les parties menus.

typedef struct {
SQLHANDLE dbc;
SQLRETURN retcode;
SQLHSTMT hstmt;
SQLHANDLE env;

} DBContext;

int main() {
DBContext db_context;
connect_to_database (&db_context) ;
init_tables (&db_context) ;
int choix;
printf ("Bonjour !\n");

while (1) {

printf ("\nMerci de selectionner si vous etes admin ou

client :\n");
printf ("1. Admin\n");
printf ("2. Client\n");
printf ("3. Quitter\n");
printf ("Votre choix : ");

if (scanf ("%d", &choix) != 1) {

printf ("Entree invalide. Veuillez reessayer.\n");

while (getchar() != ’\n’);
continue;

3

switch (choix) {

25

30
31
32
33
34
35

36

37
38
39

40
41
42

10
11

12
13
14
15
16
17

18

19

20

21

case 1: menu_admin (&db_context); break;
case 2: menu_client (&db_context); break;
case 3:
printf ("Au revoir !\n");
SQLDisconnect (db_context.dbc);
SQLFreeHandle (SQL_HANDLE_DBC, db_context.dbc)

SQLFreeHandle (SQL_HANDLE_ENV, db_context.env)
return O;
default:

printf ("Choix invalide. Veuillez reessayer.\n

ll);

Listing 13: Code pour le nouveau main

service*x addService (DBContext* db_context) {

service *service;

if ((service = malloc(sizeof (service))) == NULL) return
NULL;

printf ("\nAjouter le nom du service : ");

while (getchar() !'= ’\n’);

fgets(service->nom_service, sizeof (service->nom_service),
stdin) ;

service->nom_service[strcspn(service->nom_service, "\n")]
= ’\0’;

printf ("Ajouter le prix du service : ");

if (scanf ("%1f", &service->prix_service) != 1) {

printf ("Entree invalide pour le prix. Service non
ajoute.\n");
while (getchar() != ’\n’);
return NULL;
X
int id_categorie;
while (1) {
printf ("Veuillez choisir une categorie dans la liste
ci-dessous :\n");
get_categories(db_context);

printf ("Entrez 1’°ID de la categorie (ou 0O pour

ajouter une nouvelle categorie) : ");
if (scanf("%d", &id_categorie) != 1) {

26

22
23
24
25
26
27
28
29

30
31

32

33

34

35
36
37
38

39
40
41
42
43
44
45
46
47
48

o N O e W N

printf ("Entree invalide. Veuillez reessayer.\n");
while (getchar() != ’\n’);
continue;

I
if (id_categorie == 0) {
categorie categorie;
printf ("\nAjouter le nom de la nouvelle categorie
")
while (getchar () != ’\n’);
fgets(categorie.nom, sizeof (categorie.nom), stdin
)
categorie.nom[strcspn(categorie.nom, "\n")] = ’\O
.
id_categorie = insert_category(categorie.nom,
db_context) ;
printf ("Nouvelle categorie ajoutee avec succ s
aved ID: %d !\n",id_categorie);
break;
b
int categorie_trouvee = getCategorieById(id_categorie
, db_context) != NULL;

if (categorie_trouvee) {

break;
}
printf ("Categorie invalide. Veuillez reessayer.\n");
}
service->categorie_service_id = id_categorie;

insert_service (*service, db_context);
printf ("Service ajoute avec succes !\n");

Listing 14: Code pour la nouvelle fonction d’ajout de service

void afficherServices (DBContext* db_context) {

int count = get_entity_count("services", db_context);
if (count == 0) {

printf ("Aucun service disponible.\n");

return;
}

get_services (db_context) ;

Listing 15: Code pour la nouvelle fonction d’affichage des services

27

7.8 Service Management Interface - CLI and MySQL
Workbench

Connected successfully MySQL da !
CREATING TABLE Admin TABLE Admin HAS BEEN CREATED SUCCESSFULLY

CREATING TABLE Client TABLE Client HAS BEEN CREATED SUCCESSFULLY

CREATING t y > " gory HAS BEEN CREATED SUCCESSFULLY
CREATING S -L > S ices HAS BEEN CREATED SU FULLY
CREATING SUCCESSFULLY

commands

Création réussie des tables de la base de données (Admin, Client, Category,
Services, Commands)

> - snuw ualavascay
cE ® show tahlp:;l
Result Grid | HH Filter Rows: Export: Ef | Wrap Cell Content: A

Tables_in_test
» | admin

category

dient

commands

Services

Vue des tables dans MySQL Workbench

28

query: SELECT count(*) FROM admin
query: SELECT count(x) FROM category
7 Default categqgories were found

1D 3 Nom Informatique

ID ; Nom Electricite

ID : Nom Etudes

ID : Nom Restauration

ID Nom Coiffure

1D - Nom gquelque category

1D : Nom novelle category

Affichage des catégories par défaut dans le systeme

48 ® select * from admin;

Result Grid | 1 43 Fiter Rows: Edit: g = B

admin_id nom prenom

P |1 BEN_AHMED AHMED
| HULL | HUILL | HULL |

Requéte SELECT montrant les informations de I’administrateur

29

FROM services as s

42

Result Grid | [J] 4% Fiter Rowrs: Export: B
service_id nom nom prenom
b1 Creation de siteweb BEN_AHMED AHMED
2 Creation site web BEN_AHMED AHMED
3 creation application mobile BEN_AHMED ~ AHMED
tu 4 qlg service BEN_AHMED AHMED
S Nom service 111 BEN_AHMED AHMED

SELECT service_id, s.nom, a.nom, a.prenom, c.nom, s.prix

41 JOIN category as c on c.category_id = s.category_id

JOIN admin as a ON a.admin_id = s.admin_id;

Wrap Cell Content:

nom
Informatique
Informatique
Informatique
quelque category
novelle category

o
prix
200
200
400

-7.571533991467358e-268

200

Requéte JOIN affichant les services avec les informations associées des
tables admin et category

SELECT
Nom

matique |

que |

: AHMED B|

HMED

MED BEN_AHMED

Liste des services disponibles avec leurs détails (ID, Nom, Prix, Catégorie)

esult Grid _. H 4% Fiter Rows:

service_id nom
Creation de siteweb
Creation site web

creation application mobile
qlg service

Nom service 111

[HuLL |

Em.&wu._n

prix
200

200
400

-7.571533991467358e-268

(HULL |

s
]

% = | Export/lmport: B H§
admin_id category_id
1 3
1 3
1 3
1 8
1 9
[HuLL | [HuLL |

Requéte SELECT affichant les services avec leurs détails

30

[I

10
11

8 Deéveloppement et Intégration

Le développement a été réalisé de maniere collaborative. Apres avoir convenu
de la structure générale du projet, nous avons divisé les taches :

e Mon collegue a développé la partie logicielle du programme en ligne de
commande (CLI), qui gere les interactions avec 1'utilisateur.

e De mon coté, je me suis concentré sur 'intégration de la base de données
via le connecteur ODBC 8.1. J’ai créé les fonctions pour la connexion a
la base de données, l'initialisation des tables, et I'insertion des données
par défaut (par exemple, un utilisateur admin et des catégories par
défaut).

8.1 Gestion des Erreurs

Pendant le processus d’intégration, nous avons rencontré plusieurs erreurs,
notamment liées a la gestion de la connexion a la base de données. Un des
principaux problémes était de s’assurer que les tables étaient correctement
initialisées avant d’effectuer toute opération. Voici un exemple de gestion des
erreurs dans notre code C :

void check_error (SQLRETURN retcode, SQLHANDLE handle,
SQLSMALLINT type, char* error_message) {
if (retcode '= SQL_SUCCESS && retcode !=
SQL_SUCCESS_WITH_INFO) {
SQLCHAR sqlState[6], message [256];
SQLINTEGER nativeError;
SQLSMALLINT messagelength;
SQLGetDiagRec (type, handle, 1, sqlState, &nativeError
, message, sizeof(message), &messagelength);
printf ("%s \n", error_message);
printf ("ODBC Error: Y%s (%d): %s\n", sqlState,
nativeError , message);
exit (EXIT_FAILURE) ;
}

Listing 16: Code pour la nouvelle fonction d’affichage des services

31

9 Résultats

Les résultats du projet ont été positifs. Apres avoir intégré les deux par-
ties (menu CLI et base de données), nous avons pu générer des factures
détaillées et afficher les services disponibles. Nous avons également validé le
bon fonctionnement de la base de données en utilisant MySQL Workbench
pour vérifier les données insérées.

10 Conclusion et Perspectives

Ce projet a permis de renforcer nos compétences en programmation C et en
gestion de base de données avec ODBC. Nous avons réussi a créer un systeme
de facturation simple mais fonctionnel. A I’avenir, nous pourrions étendre ce
systeme pour permettre une gestion multi-clients, ainsi que I'ajout d’autres
fonctionnalités comme la gestion des paiements ou la génération de rapports
de facturation.

32

© 0w N O U kR W N

— =
= O

12
13
14
15
16
17
18
19
20
21
22
23
24

11 Défis rencontrés

e Problémes de connexion a la base de données : Des erreurs ini-

tiales sont survenues en raison d’une configuration incorrecte ’ODBC.
Cela a été résolu en déboguant la chaine de connexion et en testant les

requétes dans MySQL Workbench.

Validation des entrées : Des entrées utilisateur non validées ont
causé des plantages. Une validation robuste a été ajoutée pour les
options du menu.

Bugs d’intégration : L’intégration des fonctionnalités CLI avec les
opérations sur la base de données a entrainé des erreurs de récupération
de données, qui ont été résolues en testant les composants individuelle-

ment avant 'intégration.

Tout le code de la partie CLI

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct categorie {
int id_categorie;
char nom[50];

} categorie;

typedef struct service {
int id_service;
char nom_service [50];
double prix_service;
categorie categorie_service;
} service;

typedef struct client {
int id_client;
char nom_client [50];
double montant_total;
char details_facture [500];
} client;

33

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67

#define MAX_SERVICES 100
#define MAX_CATEGORIES 10
#define MAX_CLIENTS 2

service services [MAX_SERVICES];
categorie categories[MAX_CATEGORIES] = {
{1, "Coiffure"},
{2, "Electricite"},
{3, "Etudes"},
{4, "Restauration"},
{56, "Informatique"}

s

client clients[MAX_CLIENTS];

int count = 0;

int categorie_count = 5;

int client_count = 0; // Nombre de clients enregistr s

void menu_admin () ;

void menu_client () ;

void addService () ;

void afficherServices ();

void afficherCategories();

void addCategorie();

void genererFacture(int id_client);

void afficherFacture (double montant, char *details, char *
nom_client) ;

int findClientByName (char *nom_client);

void addClient () ;

void supprimerService();

void supprimerCategorie();

int main() A
int choix;
printf ("Bonjour !\n");

while (1) {
printf ("\nMerci de selectionner si vous etes admin ou
client :\n");
printf ("1. Admin\n");
printf ("2. Client\n");
printf ("3. Quitter\n");
printf ("Votre choix : ");

if (scanf("%d", &choix) != 1) {
printf ("Entree invalide. Veuillez reessayer.\n");

34

68
69
70
71
72
73
74
75
76
7
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

110

while (getchar() !'= ’\n’);
continue;

}

switch (choix) {
case 1: menu_admin(); break;
case 2: menu_client(); break;
case 3:
printf ("Au revoir !\n");
return O;
default:
printf ("Choix invalide. Veuillez reessayer.\n

ll);

}

return O;

}

void menu_admin () {

int choix;

while (1) {
printf ("\nMenu Admin :\n");
printf("1. Ajouter un service\n");
printf ("2. Afficher tous les services\n");
printf ("3. Ajouter une categorieln");
printf ("4. Supprimer un service\n");
printf ("5. Supprimer une categoriel\n");
printf ("6. Retour au menu principalln");

printf ("Votre choix : ");

if (scanf ("%d", &choix) !'= 1) {
printf ("Entree invalide. Veuillez reessayer.\n");
while (getchar() !'= ’\n’);

continue;

}

switch (choix) {
case 1: addService(); break;
case 2: afficherServices(); break;
case 3: addCategorie(); break;
case 4: supprimerService(); break;
case 5: supprimerCategorie(); break;
case 6: return;
default:

35

111 printf ("Choix invalide. Veuillez reessayer.\n
")

112 }

113 T

114 | }

115 |void supprimerService () {

116 int id_service;

117 printf ("\nEntrez 1’ID du service a supprimer : ");

118 if (scanf("%d", &id_service) !'= 1) {

119 printf ("Entree invalide. Veuillez reessayer.\n");

120 while (getchar() != ’\n’);

121 return;

122 }

123

124 int found = O0;

125 for (int i = 0; i < count; i++) {

126 if (services[i].id_service == id_service) {

127

128 for (int j = i; j < count - 1; j++) {

129 services[j] = services[j + 1];

130 }

131 count - -—;

132 printf ("Service avec ID J%d supprim avec succ s
.\n", id_service);

133 found = 1;

134 break;

135 ¥

136 }

137

138 if (!found) {

139 printf ("Service introuvable avec 1’ID %d.\n",

id_service);

140 }

141 |}

142

143 |void supprimerCategorie() {

144 int id_categorie;

145 printf ("\nEntrez 1’ID de la categorie a supprimer : ");

146 if (scanf ("%d", &id_categorie) != 1) {

147 printf ("Entree invalide. Veuillez reessayer.\n");

148 while (getchar() != ’\n’);

149 return;

150 }

151

152 // V rification de 1l’existence de la cat gorie

36

153
154
155
156
157
158
159
160

161
162
163
164
165

167

168
169

171
172
173

174
175
176
177
178
179

180

181
182

183

184

185

186

187

189

int found = O0;

for (int i = 0; i < categorie_count; i++) {
if (categories[i].id_categorie == id_categorie) {
for (int j = i; j < categorie_count - 1; j++) {
categories[j] = categories([j + 1];
}

categorie_count --—;

printf ("Categorie avec ID %d supprim e avec
succ s.\n", id_categorie);

found = 1;

break;

if (!found) {
printf ("Categorie introuvable avec 1’ID %d.\n",
id_categorie);

}

void addCategorie() {
if (categorie_count >= MAX_CATEGORIES) {
printf ("Le nombre maximum de categories a ete atteint

An");
return;
}
printf ("\nAjouter le nom de la categorie : ");
while (getchar() != ’\n’);

fgets(categories[categorie_count].nom, sizeof (categories]|[
categorie_count].nom), stdin) ;

categories[categorie_count].nom[strcspn(categories|[
categorie_count].nom, "\n")] = ’\0’;

categories[categorie_count].id_categorie =
categorie_count + 1;

printf ("Categorie ’%s’ ajoutee avec succes !\n",
categories[categorie_count].nom);

categorie_count++;

}

void addService () {
if (count >= MAX_SERVICES) {
printf ("Le nombre maximum de services a ete atteint.\
nll ;

37

190
191
192
193
194
195

196

197
198
199
200

201
202
203
204
205

207
208
209
210

211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226

227

return;

}
printf ("\nAjouter le nom du service : ");
while (getchar() != ’\n’);

fgets(services[count].nom_service, sizeof (services[count
].nom_service), stdin);
services [count] .nom_service[strcspn(services[count].

nom_service, "\n")] = ’\0’;
printf ("Ajouter le prix du service : ");
if (scanf ("%1f", &services[count].prix_service) != 1) {

printf ("Entree invalide pour le prix. Service non
ajoute.\n");

while (getchar() != ’\n’);

return;

}

while (1) {
printf ("Veuillez choisir une categorie dans la liste
ci-dessous :\n");
afficherCategories ();

int id_categorie;
printf ("Entrez 1’°ID de la categorie (ou 0O pour

ajouter une nouvelle categorie) : ");
if (scanf("%d", &id_categorie) != 1) {
printf ("Entree invalide. Veuillez reessayer.\n");
while (getchar() != ’\n’);
continue;
}
if (id_categorie == 0) {
addCategorie () ;
services [count].categorie_service = categories][
categorie_count - 1];
break;
¥
int categorie_trouvee = 0;
for (int i = 0; i < categorie_count; i++) {
if (categories[i].id_categorie == id_categorie) {

services [count].categorie_service =
categories[i];
categorie_trouvee = 1;

38

228 break;

229 }

230 }

231

232 if (categorie_trouvee) {

233 break;

234 } else {

235 printf ("Categorie invalide. Veuillez reessayer.\n
")

236 }

237 }

238

239 services [count].id_service = count + 1;

240 printf ("Service ajoute avec succes !\n");

241 count ++;

242 | }

243
244 |void afficherServices () {

245 if (count == 0) {

246 printf ("Aucun service disponible.\n");

247 return;

248 }

249

250 for (int 1 = 0; i < count; i++) {

251 printf("ID : %d | Nom : %s | Prix : %.2f | Categorie
hs\n",

252 services[i].id_service,

253 services[i] .nom_service,

254 services [i].prix_service,

255 services[i].categorie_service.nom);

256 }

257 | }

259 | void afficherCategories() A

260 printf ("\nListe des categories disponibles :\n");

261 for (int i = 0; i < categorie_count; i++) {

262 printf ("ID : %d | Nom : %s\n", categories[i].
id_categorie, categories[i].nom);

263 }

264 | }

265
266 | void menu_client () {

267 int choix;

268 char nom_client [50];
269

39

270
271
272
273
274
275
276

277

279
280
281
282

284
285
286
287

289
290
291
292
293
294
295

297
298

299
300
301
302
303
304

305
306
307
308
309
310
311

// Demande du nom du client
printf ("Veuillez entrer votre nom : ");
scanf ("%s", nom_client);

int id_client = findClientByName (nom_client);
if (id_client == -1) {
printf ("Client introuvable. Enregistrement d’un
nouveau client...\n");
addClient (nom_client) ;
id_client = client_count - 1; // Nouvel ID du client
}
do {

printf ("\nMenu Client :\n");

printf("1. Voir tous les services\n");
printf ("2. Generer une facturel\n");
printf ("3. Retour au menu principalln");

printf ("Votre choix : ");
if (scanf ("%d", &choix) !'= 1) {
printf ("Entree invalide. Veuillez reessayer.\n");
while (getchar () != ’\n’);
continue;
}
switch (choix) {
case 1:
afficherServices () ;
break;
case 2:
genererFacture (id_client); // Passe 1’1ID du
client la fonction
break;
case 3:
printf ("Retour au menu principal...\n");
break;
default:
printf ("Choix invalide. Veuillez reessayer.\n
")
}
} while (choix != 3);

}

void genererFacture (int id_client) {
double montant_total = 0.0;
int id_service;

40

312
313
314

315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

335
336

337

338
339
340
341
342
343
344

345
346
347
348
349

char details_facture[500] = "";

printf ("\nGeneration de facture pour %s\n", clients|[
id_client] .nom_client) ;

printf ("\nListe des services disponibles :\n");

afficherServices () ;

do {
printf ("Entrez 1’°ID du service que vous souhaitez
ajouter (0 pour terminer) : ");
if (scanf ("%d", &id_service) !'= 1) {
printf ("Entree invalide. Veuillez reessayer.\n");
while (getchar () != ’\n’);
continue;
}
if (id_service == 0) {
break;
}
int service_trouve = 0;
for (int i = 0; i < count; i++) {
if (services[i].id_service == id_service) {
montant_total += services[i].prix_service;
sprintf (details_facture + strlen(
details_facture),
"Service: %s | Prix: %.2f\n",
services[i] .nom_service, services[i].
prix_service) ;
strcat (details_facture, "
B it +\n")
service_trouve = 1;
break;
}
}

if (!service_trouve) {
printf ("Service introuvable. Essayez avec un ID
valide.\n");

}
} while (id_service != 0);

afficherFacture (montant_total, details_facture, clients[
id_client] .nom_client) ;

41

350
351
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

374
375
376
377
378
379
380
381
382
383

}

void afficherFacture (double montant, char *details, char *

int

}

nom_client) {

printf ("\n+-------- Facture ---------- +\n");
printf ("+-------"-"-"-"-""—-— -~ ——— +\n") ;
printf ("+-------- he--——-—--- +\n", nom_client);
printf ("+-----------"-"—"—"—-—-—————— - +\n");
printf ("%s\n", details);

printf ("\n+Total: +%.2f+\n", montant) ;
printf ("+--------"-"-"-"—"—""-"—— -~ ——— +\n") ;

findClientByName (char *nom_client) {
for (int 1 = 0; i < client_count; i++) A{
if (strcmp(clients[i].nom_client, nom_client) == 0) {
return i;
}
}

return -1;

void addClient (char *nom_client) {

if (client_count >= MAX_CLIENTS) {
printf ("Le nombre maximum de clients a ete atteint.\n

")
return;
}
clients[client_count].id_client = client_count + 1;
strcpy(clients[client_count].nom_client, nom_client) ;
clients[client_count].montant_total = 0.0;
clients[client_count].details_facture[0] = ’\0’;

printf ("Client ’%s’ ajoute avec succes !\n", nom_client);
client_count++;

Listing 17: Code pour la nouvelle fonction d’affichage des services

Tout le code de la partie CLI integrée avec
MySQL

42

© 0w N O s W N

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44

#include <windows.h>
#include <sqlext.h>
#include <sqltypes.h>
#include <sql.h>
#include <stdio.h>
#include <stdlib.h>

typedef struct {
SQLHANDLE dbc;
SQLRETURN retcode;
SQLHSTMT hstmt;
SQLHANDLE env;

} DBContext;

typedef struct categorie {
int id_categorie;
char nom[50];

} categorie;

typedef struct service {
int id_service;
char nom_service [50];
double prix_service;
int categorie_service_id;
} service;

void connect_to_database (DBContext* db_context) ;

void init_tables (DBContext* db_context) ;

int insert_category(char* categoryName, DBContext* db_context
);

int insert_service(service service, DBContext* db_context);

int get_entity_count (char* entity, DBContext* db_context);

void get_categories(DBContext* db_context);

void insert_default_categories (DBContext* db_context);

void insert_default_admin(DBContext* db_context);

void show_tables (DBContext* db_context) ;

int get_last_inserted_id (DBContext* db_context);

void menu_admin (DBContext* db_context);

void menu_client (DBContext* db_context) ;

service* addService (DBContext* db_context);

void afficherServices (DBContext* db_context);

void afficherCategories (DBContext* db_context) ;

void addCategorie (DBContext* db_context);

43

46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74

75
76
77

78
79
80
81
82
83
84

void genererFacture (DBContext* db_context);

int main() {
DBContext db_context;
connect_to_database (&db_context) ;
init_tables (&db_context) ;
int choix;
printf ("Bonjour !\n");

while (1) {
printf ("\nMerci de selectionner si vous etes admin ou
client :\n");
printf ("1. Admin\n");
printf("2. Client\n");
printf ("3. Quitter\n");

printf ("Votre choix : ");

if (scanf ("%d", &choix) !'= 1) {
printf ("Entree invalide. Veuillez reessayer.\n");
while (getchar() != ’\n’);

continue;

3

switch (choix) {
case 1: menu_admin(&db_context); break;
case 2: menu_client (&db_context); break;
case 3:
printf ("Au revoir !\n");
SQLDisconnect (db_context.dbc) ;
SQLFreeHandle (SQL_HANDLE_DBC, db_context.dbc)

SQLFreeHandle (SQL_HANDLE_ENV, db_context.env)

return O;
default:
printf ("Choix invalide. Veuillez reessayer.\n

")

void check_error (SQLRETURN retcode, SQLHANDLE handle,
SQLSMALLINT type, char* error_message) {

44

86
87
88
89

90
91

92
93
94
95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112
113

114

if (retcode != SQL_SUCCESS && retcode !=
SQL_SUCCESS_WITH_INFO) A{
SQLCHAR sqlState[6], message [256];
SQLINTEGER nativeError;
SQLSMALLINT messagelLength;
SQLGetDiagRec (type, handle, 1, sqlState, &nativeError
, message, sizeof (message), &messagelength);
printf ("%s \n", error_message);
printf ("ODBC Error: Y%s (%d): %s\n", sqlState,
nativeError, message);
exit (EXIT_FAILURE);
}
}
void init_table(char* tableName, char* tableQuery,DBContextx*
db_context) A
SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context ->hstmt) ;
printf ("CREATING TABLE s ---> " tableName) ;

db_context ->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) tableQuery, SQL_NTS);
char error_message [100];

sprintf (error_message, "Error Creating the table %s.",
tableName) ;

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, error_message);

if (db_context ->retcode == SQL_SUCCESS || db_context->
retcode == SQL_SUCCESS_WITH_INFO) {
printf ("TABLE %s HAS BEEN CREATED SUCCESSFULLY \n",
tableName) ;
}

}

int insert_category(char categoryName [100], DBContext*

db_context) A

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context->hstmt) ;

printf (" ---> INSERTING CATEGORY: %s \n", categoryName);

char *query = "INSERT INTO category(nom) values (7)";

SQLBindParameter (db_context ->hstmt, 1, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_VARCHAR, 0,0, (SQLCHAR*) categoryName,
0, NULL);

db_context ->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) query, SQL_NTS);

45

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131
132

133

134

135

136
137

139
140

int

char error_message [200];

sprintf (error_message, "ERROR INSERTING THE CATEGORY 7¥s."
, categoryName) ;

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, error_message);

if (db_context->retcode == SQL_SUCCESS || db_context->
retcode == SQL_SUCCESS_WITH_INFO) {
printf ("CATEGORY Y%s HAS BEEN CREATED SUCCESSFULLY \n"

, categoryName) ;
3

return get_last_inserted_id (db_context);

insert_service (service service ,DBContext* db_context) {
SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context->hstmt) ;

printf (" ---> INSERTING Service: %s \n", service.
nom_service) ;
char *query = "INSERT INTO services(nom,prix, category_id

, admin_id) wvalues (7,7,7,1)";

SQLBindParameter (db_context ->hstmt, 1, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_VARCHAR, 0,0, (SQLCHAR*) service.
nom_service, 0, NULL);

SQLBindParameter (db_context->hstmt, 2, SQL_PARAM_INPUT,
SQL_C_DOUBLE, SQL_DOUBLE, 0,0 ,&service.prix_service,
0, NULL);

SQLBindParameter (db_context ->hstmt, 3, SQL_PARAM_INPUT,
SQL_INTEGER, SQL_INTEGER, 0,0 ,&service.
categorie_service_id, 0, NULL);

db_context ->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) query, SQL_NTS);

char error_message [200];

sprintf (error_message, "ERROR INSERTING THE SERVICE Ys.",

service.nom_service) ;

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, error_message);

if (db_context ->retcode == SQL_SUCCESS || db_context->
retcode == SQL_SUCCESS_WITH_INFO0) {
printf ("SERVICE %s HAS BEEN CREATED SUCCESSFULLY \n",

service.nom_service) ;

}

return get_last_inserted_id (db_context);

46

141
142
143
144

145
146
147
148

149
150
151

152

153
154
155

156
157
158
159
160

161
162

163

164

166

167

168

170

171

172

173
174

int get_entity_count (char* entity, DBContext* db_context) {

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context ->hstmt) ;

char query[100] = "SELECT count (*) FROM ";

strcat (query, entity);

printf ("query: %s \n", query);

db_context ->retcode = SQLExecDirect(db_context->hstmt,
SQLCHAR*) query, SQL_NTS);

char err [70] = "ERROR RETREVING COUNT ";

strcat (err, entity);

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, err);

SQLINTEGER countRowsInCategoryTable;

SQLLEN indicator;

SQLFetch(db_context ->hstmt) ;

SQLGetData(db_context->hstmt, 1, SQL_INTEGER, &
countRowsInCategoryTable, sizeof (
countRowsInCategoryTable), &indicator);

return countRowsInCategoryTable;

}

void get_categories (DBContext* db_context) {
SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context->hstmt) ;
char* query = "SELECT category_id, nom FROM category";
db_context->retcode = SQLExecDirect(db_context->hstmt,
SQLCHAR*) query, SQL_NTS);
check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "RETRIEVING ALL CATEGORIES");
SQLLEN indicator;
int 1 = 0;
while (SQLFetch(db_context->hstmt) != SQL_NO_DATA) {
int category_id;
char nom[100];
SQLGetData(db_context->hstmt, 1, SQL_INTEGER, &
category_id, sizeof (category_id), &indicator);
SQLGetData(db_context->hstmt, 2, SQL_C_CHAR, nom,
sizeof (nom), &indicator);
printf ("ID = %d \t Nom = Y%s\n",category_id, nom) ;
i++;

47

(

(

175

176

177

178

180

181

182

184

185

186

187

189

190

191

192

193

194

195
196
197
198

199

201

void get_services (DBContext* db_context) {
SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context ->hstmt) ;
char* query = "SELECT s.service_id, s.nom, a.nom, a.

prenom, c.nom, s.prix FROM services as s JOIN category
as ¢ on c.category_id = s.category_id JOIN admin as a

ON a.admin_id = s.admin_id";

db_context ->retcode = SQLExecDirect(db_context->hstmt,

SQLCHAR*) query, SQL_NTS);
check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "RETRIEVING ALL SERVICES");
SQLLEN indicator; // Indicator for NULL value
while (SQLFetch(db_context->hstmt) != SQL_NO_DATA) {
int service_id;
double service_price;
char serviceName [100]; // maybe change
char adminNom [100]; // maybe change
char adminPrenom[100]; // maybe change
char categorieName [100]; // maybe change
SQLGetData(db_context->hstmt, 1, SQL_INTEGER, &
service_id, sizeof(service_id), &indicator);
SQLGetData(db_context->hstmt, 2, SQL_C_CHAR,
serviceName, sizeof (serviceName), &indicator)

S

)

(

SQLGetData(db_context->hstmt, 3, SQL_C_CHAR, adminNom

, sizeof (adminNom), &indicator);
SQLGetData(db_context->hstmt, 4, SQL_C_CHAR,

adminPrenom, sizeof (adminPrenom), &indicator)
SQLGetData(db_context->hstmt, 5, SQL_C_CHAR,

)

categorieName, sizeof (categorieName), &indicator);

SQLGetData(db_context->hstmt, 6, SQL_DOUBLE, &

service_price, sizeof(service_price), &indicator);
printf ("ID : %d | Nom : %s | Prix : %.2f | Categorie

%s | Ajoutee par: %s %s\n",service_id,
serviceName, service_price, categorieName,
adminPrenom, adminNom) ;

}
}
void insert_default_categories (DBContext* db_context) {
// SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc,
db_context->hstmt) ;

int countCategories = get_entity_count("category",
db_context) ;
if (countCategories == 0) {
printf ("\n----------------- INSERTING DEFAULT
CATEGORIES ----------------- \n");

&

202
203
204
205

207
208

209
210
211
212
213
214
215

216

217

218

219

220

221
222

223

224

225
226
227
228
229
230

231

insert_category("Informatique", db_context);
insert_category ("Electricite", db_context);
insert_category ("Etudes", db_context);
insert_category ("Restauration", db_context);
insert_category("Coiffure", db_context);

} else {
printf (")d Default categories were found \n",

countCategories) ;

get_categories (db_context);

}
}
void insert_default_admin(DBContext* db_context) {
int countAdmins = get_entity_count("admin", db_context);
if (countAdmins == 0) {
SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context->hstmt) ;
printf (" ---> INSERTING ADMIN: %s \n", "Ahmed Ben
Ahmed") ;
char *query = "INSERT INTO admin(nom, prenom) values
(?,7)"; // Supposing there is only one admin using
the system
SQLBindParameter (db_context->hstmt, 1,
SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR, 0,0, (
SQLCHAR=*) "BEN_AHMED", O, NULL);
SQLBindParameter (db_context ->hstmt, 2,
SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR, 0,0, (
SQLCHAR=*) "AHMED", 0, NULL);
db_context->retcode = SQLExecDirect(db_context->hstmt
, (SQLCHAR*)query, SQL_NTS);
char *error_message;
sprintf (error_message, "ERROR INSERTING THE Admin Ys.
", "Ahmed Ben Ahmed");
check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, error_message);
printf ("ADMIN %s HAS BEEN CREATED SUCCESSFULLY \n", "
Ahmed Ben Ahmed");
}
}
void show_tables (DBContext* db_context) {
char* query = "SHOW TABLES";

db_context ->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) query, SQL_NTS);

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "Error Retreiving all the tables

49

232
233
234

236
237
238
239
240

241
242
243
244
245
246
247

248

249

250

251

252

253

254
255

257
258

260

3

existed on the database.");
SQLCHAR tableName [256]; // Buffer to hold table names
SQLLEN indicator; // Indicator for NULL values

printf ("Tables in the database:\n");
printf("---------------———"—-——-—--- \n");

// Fetch each row of the result
while (SQLFetch(db_context->hstmt) != SQL_NO_DATA) A
SQLGetData(db_context->hstmt, 1, SQL_C_CHAR,
tableName, sizeof (tableName), &indicator);
printf ("%s\n", tableName); // Print the table name
}

printf("-----------------—-~——-~——~—~——~————— \n");

void init_tables(DBContext* db_context) {

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context ->hstmt) ;
init_table ("Admin",
"CREATE TABLE IF NOT EXISTS admin(admin_id INT
PRIMARY KEY AUTO_INCREMENT, nom VARCHAR (45) NOT
NULL, prenom VARCHAR (45) NOT NULL)",
db_context) ;
init_table("Client",
"CREATE TABLE IF NOT EXISTS client(client_id INT
PRIMARY KEY AUTO_INCREMENT, nom VARCHAR (45) NOT
NULL, prenom VARCHAR (45) NOT NULL)",
db_context); // Si On va implementez la fonction de
log in des utilisateurs.

init_table("Category",

"CREATE TABLE IF NOT EXISTS category(category_id INT
PRIMARY KEY AUTO_INCREMENT, nom VARCHAR (45) NOT
NULL) ",

db_context) ;

init_table("Services",

"CREATE TABLE IF NOT EXISTS services(service_id INT
PRIMARY KEY AUTO_INCREMENT, nom VARCHAR (45) NOT NULL,
prix DOUBLE NOT NULL, admin_id INT NOT NULL,
category_id INT, FOREIGN KEY (admin_id) references
admin (admin_id) on delete cascade on update restrict,
FOREIGN KEY (category_id) REFERENCES category (
category_id) on delete cascade on update restrict)",

db_context);

50

261
262

263
264
265

267
268
269
270

271
272

273

274
275
276
277
278

279
280
281
282
283

284

285

287

288

289
290

init_table("Commands",

"CREATE TABLE IF NOT EXISTS commands (service_id INT,
client_id INT, FOREIGN KEY (client_id) references
client(client_id) on delete cascade on update restrict
, FOREIGN KEY (service_id) references services/(
service_id) on delete cascade on update restrict)",

db_context);

// Execute an SQL query

show_tables (db_context) ;

insert_default_admin(db_context) ;

insert_default_categories (db_context);

int get_last_inserted_id (DBContext* db_context) {

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context->hstmt) ;

char *id_query = "SELECT LAST_INSERT_ID()";

db_context ->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) id_query, SQL_NTS);

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "ERROR RETRIEVING LAST INSERTED ID");

SQLINTEGER last_inserted_id;
SQLLEN indicator;
SQLFetch(db_context->hstmt) ;
SQLGetData (db_context->hstmt, 1, SQL_INTEGER, &
last_inserted_id, sizeof(last_inserted_id), &indicator
);
return last_inserted_id;
}
void connect_to_database (DBContext* db_context) {
// Allocate environment handle
db_context ->retcode = SQLAllocHandle (SQL_HANDLE_ENV,
SQL_NULL_HANDLE, &db_context->env);
check_error (db_context->retcode, db_context->env,
SQL_HANDLE_ENV, "connect_to_database - SQLAllocHandle"
)

// Set the O0DBC version

db_context->retcode = SQLSetEnvAttr (db_context->env,
SQL_ATTR_ODBC_VERSION, (SQLPOINTER)SQL_OV_ODBC3, 0);

check_error (db_context->retcode, db_context->env,
SQL_HANDLE_ENV, "connect_to_database - SQLSetEnvAttr")

’

// Allocate connection handle

o1

291

292

293
294
295

296

297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

db_context->retcode = SQLAllocHandle (SQL_HANDLE_DBC,
db_context->env, &db_context->dbc);

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "connect_to_database - SQLAllocHandle
")

// Connect to the database

SQLCHAR connStr[] = "DRIVER={C:\\Program Files\\MySQL\\
Connector O0DBC 8.1\\myodbc8w.dll}; SERVER=1localhost;
PORT=3306; DATABASE=test ;USER=root ; PASSWORD=; ";

db_context ->retcode = SQLDriverConnect (db_context->dbc,
NULL, connStr, SQL_NTS, NULL, O, NULL,
SQL_DRIVER_COMPLETE) ;

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "connect_to_database -
SQLDriverConnect") ;

printf ("Connected successfully to MySQL database!\n");

void menu_admin (DBContext* db_context) {

int choix;

while (1) {
printf ("\nMenu Admin :\n");
printf("1. Ajouter un servicel\n");
printf ("2. Afficher tous les services\n");
printf ("3. Ajouter une categorieln");
printf ("4. Retour au menu principalln");
printf ("Votre choix : ");

if (scanf("%d", &choix) != 1) {
printf ("Entree invalide. Veuillez reessayer.\n");
while (getchar() != ’\n’);
continue;

3

switch (choix) {
case 1: addService(db_context); break;
case 2: afficherServices(db_context); break;
case 3: addCategorie(db_context); break;
case 4: return;
default:

52

326

327
328
329
330
331
332
333
334
335
336
337
338

339

340

341

342
343

344

345

346

347

348

349

350

351

352

353

354
355

printf ("Choix invalide. Veuillez reessayer.\n

ll);

}

void addCategorie (DBContext* db_context) {
categorie categorie;

printf ("\nAjouter le nom de la categorie : ");
while (getchar () != ’\n’);

fgets(categorie.nom, sizeof (categorie.nom), stdin);
categorie.nom[strcspn(categorie.nom, "\n")] = ’\0’;

insert_category(categorie.nom, db_context);
printf ("Categorie ’%s’ ajoutee avec succes !\n",
categorie.nom) ;

}

categoriex getCategorieById(int id_categorie, DBContext*
db_context) {

categorie *categorie;

if ((categorie = malloc(sizeof (categorie))) == NULL)
return NULL;

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context ->hstmt) ;

char* query = "SELECT category_id, nom from category
where category_id = 7";

SQLBindParameter (db_context ->hstmt, 1, SQL_PARAM_INPUT,
SQL_C_LONG, SQL_INTEGER,0, 0,%id_categorie, O , NULL);

db_context->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) query, SQL_NTS);

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "Getting category by id");

SQLLEN indicator;

SQLFetch(db_context->hstmt) ;

SQLGetData (db_context->hstmt, 1, SQL_INTEGER, &categorie
->id_categorie, sizeof (categorie->id_categorie), &
indicator);

SQLGetData(db_context->hstmt, 2, SQL_CHAR, &categorie->
nom, sizeof (categorie->nom), &indicator);

return categorie;

}
service* getServiceById(int service_id, DBContext* db_context
) Ao

service *service;

53

357

358

359

360

361

362

363
364
365

366

367

368
369
370
371
372
373

374
375
376

377

378
379
380
381

382
383
384
385
386

}

if ((service = malloc(sizeof (service))) == NULL) return
NULL;

SQLAllocHandle (SQL_HANDLE_STMT, db_context->dbc, &
db_context->hstmt) ;

char* query = "SELECT service_id, nom, prix from
services where service_id = 7";

SQLBindParameter (db_context->hstmt, 1, SQL_PARAM_INPUT,
SQL_C_LONG, SQL_INTEGER,0, O,&service_id, 0 , NULL);

db_context ->retcode = SQLExecDirect(db_context->hstmt, (
SQLCHAR*) query, SQL_NTS);

check_error (db_context->retcode, db_context->dbc,
SQL_HANDLE_DBC, "Getting Service by id");

SQLLEN indicator;

SQLFetch (db_context->hstmt) ;

SQLGetData (db_context->hstmt, 1, SQL_INTEGER, &service ->
id_service, sizeof(service->id_service), &indicator);

SQLGetData(db_context->hstmt, 2, SQL_CHAR, &service->
nom_service, sizeof (service->nom_service), &indicator)

SQLGetData (db_context->hstmt, 3, SQL_DOUBLE, &service->
prix_service, sizeof(service—>prix_service), &
indicator) ;

return service;

service* addService(DBContext* db_context) {

service *service;

if ((service = malloc(sizeof (service))) == NULL) return
NULL ;

printf ("\nAjouter le nom du service : ");

while (getchar() != ’\n’);

fgets(service->nom_service, sizeof (service->nom_service),
stdin) ;

service->nom_service[strcspn(service->nom_service, "\n")]
= ’\0’;

printf ("Ajouter le prix du service : ");

if (scanf ("%1f", &service->prix_service) != 1) {

printf ("Entree invalide pour le prix. Service non
ajoute.\n");
while (getchar() != ’\n’);
return NULL;
X
int id_categorie;
while (1) {

o4

387

388
389
390

391
392
393
394
395
396
397
398
399

400
401

402

403

404

405
406
407
408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

printf ("Veuillez choisir une categorie dans la liste
ci-dessous :\n");
get_categories(db_context);

printf ("Entrez 1’ID de la categorie (ou O pour

ajouter une nouvelle categorie) : ");
if (scanf("d", &id_categorie) !'= 1) {
printf ("Entree invalide. Veuillez reessayer.\n");
while (getchar() != ’\n’);
continue;
}
if (id_categorie == 0) {
categorie categorie;
printf ("\nAjouter le nom de la nouvelle categorie
n
DN
while (getchar() !'= ’\n’);
fgets(categorie.nom, sizeof (categorie.nom), stdin
)
categorie.nom[strcspn(categorie.nom, "\n")] = ’\O
).
id_categorie = insert_category(categorie.nom,
db_context) ;
printf ("Nouvelle categorie ajoutee avec succ s
aved ID: %d !\n",id_categorie);
break;
¥
int categorie_trouvee = getCategorieById(id_categorie
, db_context) != NULL;

if (categorie_trouvee) {

break;
X
printf ("Categorie invalide. Veuillez reessayer.\n");
b
service->categorie_service_id = id_categorie;

insert_service (xservice, db_context);
printf ("Service ajoute avec succes !\n");

}

void afficherServices (DBContext* db_context) {
int count = get_entity_count("services", db_context);
if (count == 0) {

printf ("Aucun service disponible.\n");

95

424
425
426
427
428
429
430
431
432

434
435
436
437

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

456
457
458
459

461
462

463
464
465
466

return;
}

get_services (db_context) ;

void menu_client (DBContext* db_context) {
int choix;
do {
printf ("\nMenu Client :\n");
printf("1. Voir tous les services\n");
printf ("2. Generer une facture\n");
printf ("3. Retour au menu principalln");
printf ("Votre choix : ");
if (scanf("%d", &choix) != 1) {
printf ("Entree invalide. Veuillez reessayer.\n");
while (getchar () !'= ’\n’);
continue;

}

switch (choix) {
case 1:
afficherServices (db_context);
break;
case 2:
genererFacture (db_context) ;
break;
case 3:
printf ("Retour au menu principal...\n");
break;
default:
printf ("Choix invalide. Veuillez reessayer.\n
")
}
} while (choix !'= 3);
}

void genererFacture (DBContext* db_context) {
// option reintilizer la facutre pour commencez au debut
// stockage des services selectionnez pour leur afficher
dans la facture.

double montant_total = 0.0;
int id_service;

56

467 printf ("\nGeneration de facture\n");
468 printf ("\nListe des services disponibles :\n");
469 afficherServices (db_context);
470
471 do {
472 printf ("Entrez 1’ID du service que vous souhaitez
ajouter (0 pour terminer) : ");
473 if (scanf ("%d", &id_service) !'= 1) {
474 printf ("Entree invalide. Veuillez reessayer.\n");
475 while (getchar () != ’\n’);
476 continue;
477 }
478
479 if (id_service == 0) {
480 break;
481 }
482
483 service *service_trouve = getServiceById(id_service,
db_context);
484 montant_total += service_trouve->prix_service;
485 if (service_trouve == NULL) {
486 printf ("Service introuvable. Essayez avec un ID
valide.\n");
487 }
488
489 } while (id_service != 0);
490
491 printf ("\nMontant total de la facture : %.2f\nMerci pour
votre visite !", montant_total);
492 |}

Listing 18: Code pour la nouvelle fonction d’affichage des services

References

1. ODBC Installation (Version 8.1): https://downloads.mysql.com/
archives/c-odbc/.

2. MySQL Workbench Documentation: https://dev.mysql.com/doc/
workbench/en/|

o7

https://downloads.mysql.com/archives/c-odbc/
https://downloads.mysql.com/archives/c-odbc/
https://dev.mysql.com/doc/workbench/en/
https://dev.mysql.com/doc/workbench/en/

	Introduction et Contexte
	Objectifs
	Outils et Technologies
	Préparation de l'environnement (Si l'on travaille avec du code qui intègre une base de données)
	Installation d'ODBC
	Inclusion dans un Projet CMake

	Conception du Système
	Méthodologie
	Répartition des tâches
	Phases de développement

	Implémentation
	Vue d'ensemble du code
	Fonctions clés
	Extraits de code pour la partie CLI uniquement
	L'interface
	Partie Admin
	Extraits de code pour la partie base de donnees uniquement
	Extraits de code pour les deux parties combinées
	Service Management Interface - CLI and MySQL Workbench

	Développement et Intégration
	Gestion des Erreurs

	Résultats
	Conclusion et Perspectives
	Défis rencontrés

